cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A309130 Smallest prime factor of A077586(n).

Original entry on oeis.org

7, 127, 2147483647, 170141183460469231731687303715884105727, 47, 338193759479, 231733529, 62914441, 2351, 1399, 295257526626031, 18287, 106937, 863, 4703, 138863, 22590223644617
Offset: 1

Views

Author

Richard N. Smith, Jul 13 2019

Keywords

Comments

A263686 is a subsequence.
Agrees with A263686 in the first four terms, but then the two sequences differ for the first time at n = 5, because prime(5) = 11 is not in A000043.
a(18) = A263686(9) is greater than 1.56*10^17*(2^61-1), see link.
a(n) = A077586(n) iff A077586(n) is prime, A077586(n) is prime for 1 <= n <= 4, but composite for 5 <= n <= 17. The status of A077586(18) = 2^(2^61-1)-1 is unknown. It is conjectured that A077586(n) is composite for all n >= 5.
a(20) = 456959, a(21) = 18384329, a(22) = 198839, a(23) = 2349023, a(24) = A263686(10) is greater than 1.25*10^16*(2^89-1).
Conjecture: All terms are in A122094 (all terms in A263686 are in A122094).
For examples related to that conjecture, see A322568. - Jeppe Stig Nielsen, Aug 29 2019
a(30) = 46559, a(32) = 23671, a(36) = 7151489, a(39) = 4698047, a(41) = 719, a(43) = 1440847, a(45) = 179689, a(47) = 11759383, a(48) = 23602441, a(50) = 9024439, a(51) = 28875361, a(52) = 6301423, a(54) = 2493983, a(56) = 33518137, a(59) = 6727783, a(66) = 95111, a(72) = 1439, a(73) = 99833, a(78) = 38119, a(81) = 26849, a(83) = 8258911, a(86) = 16173559, a(89) = 625343, a(93) = 9743. - Chai Wah Wu, Oct 16 2019

Crossrefs

Programs

  • PARI
    A309130(n)=A020639(2^(2^prime(n)-1)-1) \\ For efficiency, use addprimes([large terms of this sequence]). - M. F. Hasler, Mar 01 2025

Formula

a(n) = A020639(A077586(n)).
a(n) = A049479(A001348(n)). - M. F. Hasler, Mar 01 2025

A367002 a(n) is the smallest prime factor of n*2^n-1.

Original entry on oeis.org

7, 23, 3, 3, 383, 5, 23, 17, 3, 3, 23, 5, 5, 7, 3, 3, 79, 13, 1879, 13, 3, 3, 47, 7, 229, 5, 3, 3, 32212254719, 263, 223, 5, 3, 3, 5, 73, 17, 1217, 3, 3, 6709, 29, 7, 71, 3, 3, 11, 97, 47, 228713, 3, 3, 5, 37, 5, 7, 3, 3, 9377, 11, 13, 479, 3, 3, 41, 5, 13, 137
Offset: 2

Views

Author

Sean A. Irvine, Oct 31 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> min(numtheory:-factorset(n*2^n-1)):
    map(f, [$2..100]); # Robert Israel, Nov 08 2023
  • Mathematica
    Table[FactorInteger[n*2^n-1][[1,1]], {n,2,69}] (* Paul F. Marrero Romero, Dec 17 2023 *)

Formula

a(n) = A020639(A003261(n)).
a(n) = 3 iff n == 4 or 5 (mod 6). - Robert Israel, Nov 08 2023

A136033 a(n) = smallest number k such that number of prime factors of 2^k-1 is exactly n (counted with multiplicity).

Original entry on oeis.org

2, 4, 6, 16, 12, 18, 24, 40, 54, 36, 102, 110, 60, 72, 108, 140, 120, 156, 144, 200, 216, 210, 240, 180, 456, 288, 336, 300, 396, 480, 882, 360, 468, 700
Offset: 1

Views

Author

Artur Jasinski, Dec 11 2007

Keywords

Crossrefs

Programs

  • Maple
    N:= 24: # to get a(1) to a(N)
    unknown:= N:
    for k from 2 while unknown > 0 do
      q:= numtheory:-bigomega(2^k-1);
      if q <= N and not assigned(A[q]) then
         A[q]:= k;
         unknown:= unknown - 1;
      fi
    od:
    seq(A[i],i=1..N); # Robert Israel, Oct 24 2014
  • Mathematica
    Module[{nn=250,tbl},tbl=Table[{k,PrimeOmega[2^k-1]},{k,nn}];Table[SelectFirst[tbl,#[[2]]==n&],{n,24}]][[;;,1]] (* The program generates the first 24 terms of the sequence. *)  (* Harvey P. Dale, May 25 2025 *)
  • PARI
    a(n) = {k = 1; while(bigomega(2^k-1) != n, k++); k;} \\ Michel Marcus, Nov 04 2013

Extensions

a(15)-a(20) from Michel Marcus, Nov 04 2013
a(21)-a(24) from Derek Orr, Oct 23 2014
a(25)-a(34) from Jinyuan Wang, Jun 07 2019

A249780 Product of lowest and highest prime factors of 2^n-1.

Original entry on oeis.org

9, 49, 15, 961, 21, 16129, 51, 511, 93, 2047, 39, 67092481, 381, 1057, 771, 17179607041, 219, 274876858369, 123, 2359, 2049, 8388607, 723, 55831, 24573, 1838599, 381, 486737, 993, 4611686014132420609, 196611, 4196353, 393213, 3810551, 327, 137438953471, 1572861, 849583, 185043
Offset: 2

Views

Author

Jacob Vecht, Nov 05 2014

Keywords

Examples

			The lowest and higest prime factors of 2^6-1 are 3 and 7, so A(6) = 21
		

Programs

  • Maple
    a:= proc(n) local F; F:= numtheory:-factorset(2^n-1); min(F)*max(F) end proc:
    seq(a(n),n=2..50); # Robert Israel, Nov 05 2014
  • Mathematica
    plhpf[n_]:=Module[{fn=FactorInteger[n]},fn[[1,1]]fn[[-1,1]]]; Table[plhpf [2^n-1],{n,2,40}] (* Harvey P. Dale, May 23 2020 *)
  • PARI
    for(n=2, 50, p=2^n-1; print1(factor(p)[1, 1]*factor(p)[#factor(p)[, 1], 1], ", ")) \\ Derek Orr, Nov 05 2014
    
  • Python
    from sympy import primefactors
    A249780_list, x = [], 1
    for n in range(2,10):
        x = 2*x + 1
        p = primefactors(x)
        A249780_list.append(max(p)*min(p)) # Chai Wah Wu, Nov 05 2014

Formula

a(n) = A005420(n) * A049479(n)

Extensions

More terms from Derek Orr, Nov 05 2014

A140452 2^(a(n))-1 contains an overpseudoprime divisor.

Original entry on oeis.org

11, 22, 23, 25, 28, 29, 33, 35, 36, 37, 39, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109
Offset: 1

Views

Author

Vladimir Shevelev, Jun 26 2008

Keywords

Comments

If p is a prime then p is in the sequence iff 2^p-1 is a composite number.

Crossrefs

Programs

  • PARI
    f(n) = my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1; \\ A137576
    isopp(n) = (n>1) && !isprime(n) && (n == f((n-1)/2)); \\ A141232
    isok(n) = {fordiv(2^n-1, d, if (isopp(d), return (1));); return (0);} \\ Michel Marcus, Dec 09 2018

Extensions

More terms from Michel Marcus, Dec 09 2018

A239638 Numbers n such that the semiprime 2^n-1 is divisible by 2n+1.

Original entry on oeis.org

11, 23, 83, 131, 3359, 130439, 406583
Offset: 1

Views

Author

Zak Seidov, Mar 23 2014

Keywords

Comments

All terms are primes == 5 modulo 6 (A005384 Sophie Germain primes).
a(8) >= 500000. - Max Alekseyev, May 28 2022

Examples

			n = 11, 2^n -1 = 2047 = 23*89,
n = 23, 8388607 = 47*178481,
n = 131, 2722258935367507707706996859454145691647 =  263*10350794431055162386718619237468234569.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[4000], PrimeQ[2*# + 1] && PowerMod[2, #, 2*# + 1] == 1 &&
    PrimeQ[(2^# - 1)/(2*# + 1)] &] (* Giovanni Resta, Mar 23 2014 *)
  • PARI
    is(n)=n%6==5 && Mod(2,2*n+1)^n==1 && isprime(2*n+1) && ispseudoprime((2^n-1)/(2*n+1)) \\ Charles R Greathouse IV, Aug 25 2016
    
  • Python
    from sympy import isprime, nextprime
    A239638_list, p = [], 5
    while p < 10**6:
        if (p % 6) == 5:
            n = (p-1)//2
            if pow(2,n,p) == 1 and isprime((2**n-1)//p):
                A239638_list.append(n)
        p = nextprime(p) # Chai Wah Wu, Jun 05 2019

Extensions

a(5)-a(6) from Giovanni Resta, Mar 23 2014
a(7) from Eric Chen, added by Max Alekseyev, May 21 2022

A368811 a(n) = period length of the sequence A020639(n^k - 1), k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 12, 1, 10, 1, 1, 1, 60, 1, 10, 1, 1, 1, 18, 1, 2, 1, 1, 1, 660, 1, 66, 1, 1, 1, 1, 1, 10, 1, 1, 1, 4620, 1, 6, 1, 1, 1, 660, 1, 2, 1, 1, 1, 31878, 1, 2, 1, 1, 1, 197340, 1, 5742, 1, 1, 1, 1, 1, 52026, 1, 1, 1, 440220, 1, 28014, 1, 1, 1, 4, 1, 2610, 1, 1, 1, 28014, 1, 2, 1, 1, 1, 3693690, 1, 2, 1, 1, 1, 1, 1, 7590, 1, 1, 1, 1642460820
Offset: 3

Views

Author

Max Alekseyev, Jan 06 2024

Keywords

Comments

For n = 2, the sequence A020639(n^k - 1) is not periodic (see A049479), but it is such for any n >= 3.
a(n) divides A058254(A000720(A020639(n-1))).

Examples

			a(8) = 2 is the period length of A010705.
a(12) = 12 is the period length of A366717.
		

Crossrefs

Programs

  • PARI
    { a368811(n) = my(r=[], z); forprime(p=2, factor(n-1)[1, 1], if(n%p==0, next); z=znorder(Mod(n, p)); if(!#r || vecmin(apply(x->z%x,r)), r=concat(r,[z])) ); lcm(r); }

Formula

For odd n >= 3, a(n) = 1.

A136034 a(n) = smallest number k such that number of distinct prime factors of 2^k-1 is exactly n.

Original entry on oeis.org

1, 2, 4, 8, 12, 20, 24, 40, 36, 48, 88, 60, 72, 150, 132, 120, 156, 144, 200, 204, 210, 180, 324, 476, 288, 300, 432, 396, 480, 360, 468, 576, 700, 504, 420, 648, 540, 660, 792, 720
Offset: 0

Views

Author

Artur Jasinski, Dec 11 2007

Keywords

Comments

First occurrence of n in A046800.

Crossrefs

Programs

  • Mathematica
    With[{pn1=PrimeNu[2^Range[800]-1]},Table[Position[pn1,n,1,1],{n,0,40}]]//Flatten (* Harvey P. Dale, Jan 10 2025 *)
  • PARI
    a(n) = my(k=1); while (omega(2^k-1) != n, k++); k; \\ Michel Marcus, Jan 09 2023

Extensions

More terms from Julián Aguirre, Feb 04 2013
a(31)-a(39) from Chai Wah Wu, Oct 03 2019
a(0) = 1 inserted by Michel Marcus, Jan 09 2023

A347141 a(1) = 11; for n > 1, a(n) is the smallest prime factor of 2^a(n-1) - 1.

Original entry on oeis.org

11, 23, 47, 2351, 4703
Offset: 1

Views

Author

J. Lowell, Aug 19 2021

Keywords

Examples

			2^11 - 1 = 23*89, so the next term after 11 is 23.
		

Crossrefs

Cf. A049479.

Programs

  • Mathematica
    a[1] = 11; a[n_] := a[n] = Module[{p = 3}, While[PowerMod[2, a[n - 1], p] != 1, p = NextPrime[p]]; p]; Array[a, 5] (* Amiram Eldar, Aug 19 2021 *)

A350381 Composite numbers k such that the multiplicative order of 2 modulo lpf(2^k-1) is k, where lpf = least prime factor.

Original entry on oeis.org

169, 221, 323, 611, 779, 793, 923, 1121, 1159, 1271, 1273, 1349, 1513, 1717, 1829, 1919, 2033, 2077, 2201, 2413, 2533, 2603, 2759, 2951, 3097, 3131, 3173, 3193, 3281, 3379, 3599, 3721, 3791, 3937, 3953, 4043, 4223, 4309, 4331, 4607, 4619, 4867, 4883, 4981, 5111
Offset: 1

Views

Author

Jianing Song, Dec 28 2021

Keywords

Comments

Obviously, if p is a prime, then the multiplicative order of 2 modulo lpf(2^p-1) is p.
It is easy to see that this is a subsequence of A292559 and A322568, so this sequence is included in the intersection of those two sequences. The inclusion is proper. 68231 is in A292559 and A322568 but not in this sequence: lpf(2^68231-1) = 136463 = 2*68231 + 1, the multiplicative order of 2 modulo 136463 is 2201 = 31 * 71 < 68231.
A semiprime in A322568 is in this sequence by definition. 20519, 48263, 63023, 138263, 216239, 341651, 421259, 480323 are examples of terms that are not semiprimes.
Every term is coprime to 2, 3, 5, 7, 11 and 23.

Examples

			169 is a term since the least prime factor of 2^169 - 1 is 4057, and the multiplicative order of 2 modulo 4057 is 169.
323 is a term since the least prime factor of 2^323 - 1 is 647, and the multiplicative order of 2 modulo 647 is 323.
1343 is not a term since the least prime factor of 2^1343 - 1 is 2687, and the multiplicative order of 2 modulo 2687 is 79 < 1343.
		

Crossrefs

Cf. A049479 (lpf(2^n-1)), A292559, A322568.

Programs

  • PARI
    b(n) = forprime(p=3, oo, if(n % znorder(Mod(2,p))==0, return(p)))
    isA350381(n) = !isprime(n) && (n>1) && znorder(Mod(2,b(n)))==n \\ Warning: this program can only give the first 7 terms.

Extensions

More terms from Jinyuan Wang, Jan 22 2025
Previous Showing 11-20 of 20 results.