cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A166692 Triangle T(n,k) read by rows: T(n,k) = 2^(k-1), k>0, T(n,0) = (n+1) mod 2.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 0, 1, 2, 4, 1, 1, 2, 4, 8, 0, 1, 2, 4, 8, 16, 1, 1, 2, 4, 8, 16, 32, 0, 1, 2, 4, 8, 16, 32, 64, 1, 1, 2, 4, 8, 16, 32, 64, 128, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
Offset: 0

Views

Author

Paul Curtz, Oct 18 2009

Keywords

Comments

Variant of A166918.

Examples

			Triangle begins as:
  1;
  0, 1;
  1, 1, 2;
  0, 1, 2, 4;
  1, 1, 2, 4, 8;
  0, 1, 2, 4, 8, 16;
		

Crossrefs

Programs

  • Magma
    A166692:= func< n,k | k eq 0 select ((n+1) mod 2) else 2^(k-1) >;
    [A166692(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 24 2023
    
  • Mathematica
    Join[{1,0},Flatten[Riffle[Table[2^Range[0,n],{n,0,10}],{1,0}]]] (* Harvey P. Dale, Jan 18 2015 *)
  • SageMath
    def A166692(n,k): return ((n+1)%2) if (k==0) else 2^(k-1)
    flatten([[A166692(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Apr 24 2023

Formula

T(2n, k) = A011782(k).
T(2n+1, k) = A131577(k).
Sum_{k=0..n} T(n,k) = A051049(n).
From G. C. Greubel, Apr 24 2023: (Start)
T(2*n, n) = A011782(n).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n * A005578(n).
Sum_{k=0..n} T(n-k, k) = A106624(n). (End)

Extensions

More terms from Harvey P. Dale, Jan 18 2015

A135221 Triangle A007318 + A000012(signed) - I, I = Identity matrix, read by rows.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 0, 4, 2, 1, 2, 3, 7, 3, 1, 0, 6, 9, 11, 4, 1, 2, 5, 16, 19, 16, 5, 1, 0, 8, 20, 36, 34, 22, 6, 1, 2, 7, 29, 55, 71, 55, 29, 7, 1, 0, 10, 35, 85, 125, 127, 83, 37, 8, 1, 2, 9, 46, 119, 211, 251, 211, 119, 46, 9, 1, 0, 12, 54, 166, 329, 463, 461, 331, 164, 56, 10, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 23 2007

Keywords

Comments

row sums = A051049: (1, 1, 4, 7, 16, 31, 64, ...).

Examples

			First few rows of the triangle:
  1;
  0, 1;
  2, 1,  1;
  0, 4,  2,  1;
  2, 3,  7,  3,  1;
  0, 6,  9, 11,  4,  1;
  2, 5, 16, 19, 16,  5,  1;
  0, 8, 20, 36, 34, 22,  6, 1;
  2, 7, 29, 55, 71, 55, 29, 7, 1;
...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=n then return 1;
        else return Binomial(n,k) + (-1)^(n-k);
        fi; end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 20 2019
  • Magma
    T:= func< n,k | k eq n select 1 else Binomial(n,k) +(-1)^(n-k) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2019
    
  • Maple
    seq(seq( `if`(k=n, 1, binomial(n,k) + (-1)^(n-k)), k=0..n), n=0..12); # G. C. Greubel, Nov 20 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==n, 1, Binomial[n, k] + (-1)^(n-k)] ;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
  • PARI
    T(n,k) = if(k==n, 1, binomial(n,k) + (-1)^(n-k)); \\ G. C. Greubel, Nov 20 2019
    
  • Sage
    def T(n, k):
        if (k==n): return 1
        else: return binomial(n,k) + (-1)^(n-k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 20 2019
    

Formula

T(n,k) = A007318 + A000012(signed) - Identity matrix, where A000012(signed) = (1; -1,1; 1,-1,1; ...).
T(n,k) = (-1)^(n-k) + binomial(n,k), with T(n,n)=1. - G. C. Greubel, Nov 20 2019

Extensions

More terms added by G. C. Greubel, Nov 20 2019

A280173 a(0) = 1, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [5, -4].

Original entry on oeis.org

1, 7, 10, 25, 46, 97, 190, 385, 766, 1537, 3070, 6145, 12286, 24577, 49150, 98305, 196606, 393217, 786430, 1572865, 3145726, 6291457, 12582910, 25165825, 50331646, 100663297, 201326590, 402653185, 805306366, 1610612737, 3221225470, 6442450945, 12884901886
Offset: 0

Views

Author

Paul Curtz, Dec 28 2016

Keywords

Comments

a(n) mod 9 = period 2: repeat [1, 7].
The last digit from 7 is of period 4: repeat [7, 0, 5, 6].
The bisection A096045 = 1, 10, 46, ... is based on Bernoulli numbers.
a(n) is a companion to A051049(n).
With an initial 0, A051049(n) is an autosequence of the first kind.
With an initial 2, this sequence is an autosequence of the second kind.
See the reference.
Difference table:
1, 7, 10, 25, 46, 97, ... = this sequence.
6, 3, 15, 21, 51, 93, ... = 3*A014551(n)
-3, 12, 6, 30, 42, 102, ... = -3 followed by 6*A014551(n).
The main diagonal of the difference table gives A003945: 1, 3, 6, 12, 24, ...

Examples

			a(0) = 1, a(1) = 2*1 + 5 = 7, a(2) = 2*7 - 4 = 10, a(3) = 2*10 + 5 = 25.
		

Crossrefs

Programs

  • Maple
    seq(3*2^n-(-1)^n*(1+irem(n+1,2)),n=0..32); # Peter Luschny, Dec 29 2016
  • Mathematica
    LinearRecurrence[{2,1,-2},{1,7,10},50] (* Paolo Xausa, Nov 13 2023 *)
  • PARI
    Vec((1 + 5*x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 28 2016

Formula

a(2n) = 3*4^n - 2, a(2n+1) = 6*4^n + 1.
a(n+2) = a(n) + 9*2^n, a(0) = 1, a(1) = 7.
a(n) = 2*A051049(n+1) - A051049(n).
From Colin Barker, Dec 28 2016: (Start)
a(n) = 3*2^n - 2 for n even.
a(n) = 3*2^n + 1 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2.
G.f.: (1 + 5*x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)).
(End)

A280345 a(0) = 3, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [1, -2].

Original entry on oeis.org

3, 7, 12, 25, 48, 97, 192, 385, 768, 1537, 3072, 6145, 12288, 24577, 49152, 98305, 196608, 393217, 786432, 1572865, 3145728, 6291457, 12582912, 25165825, 50331648, 100663297, 201326592, 402653185, 805306368, 1610612737, 3221225472, 6442450945, 12884901888
Offset: 0

Views

Author

Paul Curtz, Jan 01 2017

Keywords

Comments

a(n) mod 9 is a periodic sequence of length 2: repeat [3, 7].
From 7, the last digit is of period 4: repeat [7, 2, 5, 8].
(Main sequence for the signature (2,1,-2): 0, 0, 1, 2, 5, 10, 21, 42, ... = 0 followed by A000975(n) = b(n), which first differences are A001045(n) (Paul Barry, Oct 08 2005). Then, 0 followed by b(n) is an autosequence of the first kind. The corresponding autosequence of the second kind is 0, 0, 2, 3, 8, 15, 32, 63, ... . See A277078(n).)
Difference table of a(n):
3, 7, 12, 25, 48, 97, 192, ...
4, 5, 13, 23, 49, 95, 193, ... = -(-1)^n* A140683(n)
1, 8, 10, 26, 46, 98, 190, ... = A259713(n)
7, 2, 16, 20, 52, 92, 196, ...
-5, 14, 4, 32, 40, 104, 184, ...
... .

Examples

			a(0) = 3, a(1) = 2*3 + 1 = 7, a(2) = 2*7 - 2 = 12, a(3) = 2*12 + 1 = 25.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[n_] := a[n] = 2 a[n - 1] + 1 + (-3) Boole[EvenQ@ n]; Table[a@ n, {n, 0, 32}] (* or *)
    CoefficientList[Series[(3 + x - 5 x^2)/((1 - x) (1 + x) (1 - 2 x)), {x, 0, 32}], x] (* Michael De Vlieger, Jan 01 2017 *)
  • PARI
    Vec((3 + x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Jan 01 2017

Formula

a(2n) = 3*4^n, a(2n+1) = 6*4^n + 1.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), n>2.
a(n+2) = a(n) + 9*2^n.
a(n) = 2^(n+2) - A051049(n).
From Colin Barker, Jan 01 2017: (Start)
a(n) = 3*2^n for n even.
a(n) = 3*2^n + 1 for n odd.
G.f.: (3 + x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)).
(End)
Binomial transform of 3, followed by (-1)^n* A140657(n).

Extensions

More terms from Colin Barker, Jan 01 2017

A321643 a(n) = 5*2^n - (-1)^n.

Original entry on oeis.org

4, 11, 19, 41, 79, 161, 319, 641, 1279, 2561, 5119, 10241, 20479, 40961, 81919, 163841, 327679, 655361, 1310719, 2621441, 5242879, 10485761, 20971519, 41943041, 83886079, 167772161, 335544319, 671088641, 1342177279, 2684354561, 5368709119, 10737418241, 21474836479
Offset: 0

Views

Author

Paul Curtz, Dec 03 2018

Keywords

Crossrefs

Programs

  • GAP
    List([0..30],n->5*2^n-(-1)^n); # Muniru A Asiru, Dec 05 2018
    
  • Maple
    [5*2^n-(-1)^n$n=0..30]; # Muniru A Asiru, Dec 05 2018
  • Mathematica
    a[n_] := 5*2^n - (-1)^n; Array[a, 30, 0] (* Amiram Eldar, Dec 03 2018 *)
  • PARI
    Vec((4 + 7*x) / ((1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 04 2018
    
  • Python
    for n in range(0,30): print(5*2**n - (-1)**n) # Stefano Spezia, Dec 05 2018

Formula

a(n+2) - a(n) = a(n+1) + a(n) = 15*2^n, n >= 0.
a(n) - 2*a(n-1) = period 2: repeat [3, -3], n > 0, a(0)=4, a(1)=11.
a(n+1) = 10*A051049(n) + period 2: repeat [1, 9].
a(n) = 12*2^n - A321483(n), n >= 0.
a(n) = 2^(n+2) + 3*A001045(n), n >= 0.
a(n) == A070366(n+4) (mod 9).
From Colin Barker, Dec 04 2018: (Start)
G.f.: (4 + 7*x) / ((1 + x)*(1 - 2*x)).
a(n) = a(n-1) + 2*a(n-2) for n > 1. (End)
E.g.f.: exp(-x)*(5*exp(3*x) - 1). - Elmo R. Oliveira, Aug 17 2024

A131086 Triangle read by rows: T(n,k) = 2*binomial(n,k) - (-1)^(n-k) (0 <= k <= n).

Original entry on oeis.org

1, 3, 1, 1, 5, 1, 3, 5, 7, 1, 1, 9, 11, 9, 1, 3, 9, 21, 19, 11, 1, 1, 13, 29, 41, 29, 13, 1, 3, 13, 43, 69, 71, 41, 15, 1, 1, 17, 55, 113, 139, 113, 55, 17, 1, 3, 17, 73, 167, 253, 251, 169, 71, 19, 1, 1, 21, 89, 241, 419, 505, 419, 241, 89, 21, 1, 3, 21, 111, 329
Offset: 0

Views

Author

Gary W. Adamson, Jun 14 2007

Keywords

Comments

Row sums = A051049 starting (1, 4, 7, 16, 31, 64, ...).

Examples

			First few rows of the triangle are
  1;
  3,  1;
  1,  5,  1;
  3,  5,  7,  1;
  1,  9, 11,  9,  1;
  3,  9, 21, 19, 11,  1;
  1, 13, 29, 41, 29, 13,  1;
  ...
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if k <= n then 2*binomial(n, k)-(-1)^(n-k) else 0 end if end proc: for n from 0 to 11 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jun 21 2007

Formula

G.f. = G(t,z) = (1 + 3z - tz - 2tz^2)/((1+z)(1-tz)(1-z-tz)). - Emeric Deutsch, Jun 21 2007

Extensions

More terms from Emeric Deutsch, Jun 21 2007
Sequence corrected by N. J. A. Sloane, Sep 30 2007

A155998 Triangle read by rows: T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = binomial(n, k)*(1 - (-1)^k)/2.

Original entry on oeis.org

0, 1, 1, 0, 4, 0, 1, 3, 3, 1, 0, 8, 0, 8, 0, 1, 5, 10, 10, 5, 1, 0, 12, 0, 40, 0, 12, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 16, 0, 112, 0, 112, 0, 16, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 20, 0, 240, 0, 504, 0, 240, 0, 20, 0
Offset: 0

Views

Author

Roger L. Bagula, Feb 01 2009

Keywords

Comments

Row sums are: A155559(n) = {0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...}.

Examples

			Triangle begins as:
  0;
  1,  1;
  0,  4,  0;
  1,  3,  3,   1;
  0,  8,  0,   8,   0;
  1,  5, 10,  10,   5,   1;
  0, 12,  0,  40,   0,  12,  0;
  1,  7, 21,  35,  35,  21,  7,   1;
  0, 16,  0, 112,   0, 112,  0,  16, 0;
  1,  9, 36,  84, 126, 126, 84,  36, 9,  1;
  0, 20,  0, 240,   0, 504,  0, 240, 0, 20, 0;
		

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n, k)*(2 - (-1)^k*(1 + (-1)^n))/2 ))); # G. C. Greubel, Dec 01 2019
  • Magma
    [Binomial(n, k)*(2 - (-1)^k*(1+(-1)^n))/2: k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 01 2019
    
  • Maple
    seq(seq( binomial(n, k)*(2 - (-1)^k*(1+(-1)^n))/2, k=0..n), n=0..12); # G. C. Greubel, Dec 01 2019
  • Mathematica
    f[n_, k_]:= Binomial[n, k]*(1 - (-1)^k)/2; Table[f[n,k]+f[n,n-k], {n, 0, 10}, {k, 0, n}]//Flatten
    Table[Binomial[n, k]*(2-(-1)^k*(1+(-1)^n))/2, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 01 2019 *)
  • PARI
    T(n,k) = binomial(n, k)*(2 - (-1)^k*(1+(-1)^n))/2; \\ G. C. Greubel, Dec 01 2019
    
  • Sage
    [[binomial(n, k)*(2 - (-1)^k*(1+(-1)^n))/2 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Dec 01 2019
    

Formula

T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = binomial(n, k)*(1 - (-1)^k)/2.
From G. C. Greubel, Dec 01 2019: (Start)
T(n, k) = binomial(n, k)*(2 - (-1)^k*(1 + (-1)^n))/2.
Sum_{k=0..n} T(n,k) = 2^n = A155559(n) for n >= 1.
Sum_{k=0..n-1} T(n,k) = (2^(n+1) - (1-(-1)^n))/2 = A051049(n), n >= 1. (End)

A174182 Numerator of the first column, n-th row of the table of the Akiyama-Tanigawa transform starting from a top row of Bernoulli numbers.

Original entry on oeis.org

1, 3, 17, 13, 481, 69, 1595, 53, 64561, 19333, -24278897, -4223787, 425750784331, 2082755237, -759610365139, -1935668618507, 91825384919760257, 3104887811555781, -333936446105117072383, -8039608511659164907, 496858217433153687034811, 31900258438443561908965, -1108179772136293880993162549, -186044136772398390757763787, 167280081459577193334628789960171
Offset: 0

Views

Author

Paul Curtz, Mar 11 2010

Keywords

Comments

Starting with a top row of Bernoulli numbers, the Akiyama-Tanigawa transform generates further rows as follows:
1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66,...
3/2, -4/3, 1/2, 2/15, -1/6, -1/7, 1/6, 4/15, -3/10, -25/33,..
17/6, -11/3, 11/10, 6/5, -5/42, -13/7, -7/10, 68/15, 453/110,...
13/2, -143/15, -3/10, 554/105, 365/42, -243/35, -1099/30, 548/165,...
481/30, -277/15, -1171/70, -478/35, 469/6, 1247/7, -6153/22,..
69/2, -73/21, -129/14, -38566/105, -20995/42, 211515/77,...
The numerators of the leftmost column define the current sequence.
The denominators appear to be the same as A141056.

Crossrefs

Programs

  • Mathematica
    a[0, k_] := BernoulliB[k]; a[n_, k_] := a[n, k] = (k+1)*(a[n-1, k] - a[n-1, k+1]); Table[a[n, 0], {n, 0, 24}] // Numerator (* Jean-François Alcover, Sep 18 2012 *)

Formula

(a(n)-A174129(n))/A141056(n) = A000225(n).

A318143 Coefficients of the polynomials generated by the e.g.f. cosh(x*z)*(x-1)/(x-exp(z*(x-1))), triangle read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 4, 4, 0, 1, 11, 17, 7, 1, 1, 26, 76, 66, 16, 0, 1, 57, 317, 467, 237, 31, 1, 1, 120, 1212, 2962, 2612, 806, 64, 0, 1, 247, 4321, 17215, 24145, 13519, 2641, 127, 1, 1, 502, 14644, 92554, 199192, 178486, 65884, 8434, 256, 0
Offset: 0

Views

Author

Peter Luschny, Aug 19 2018

Keywords

Examples

			[n\k][0,   1,    2,     3,     4,     5,    6,   7,  8]
[0]   1;
[1]   1,   0;
[2]   1,   1,    1;
[3]   1,   4,    4,     0;
[4]   1,  11,   17,     7,     1;
[5]   1,  26,   76,    66,    16,     0;
[6]   1,  57,  317,   467,   237,    31,    1;
[7]   1, 120, 1212,  2962,  2612,   806,   64,   0;
[8]   1, 247, 4321, 17215, 24145, 13519, 2641, 127, 1;
		

Crossrefs

Row sums are (-1)^n*A009179(n).
Alternating row sums are 1.
Polynomials evaluated at x = 0 are 1.
T(n, n-1) = A051049(n-1) for n >= 1.
T(n, 1) = A000295(n) for n >= 0.

Programs

  • Maple
    gf := cosh(x*z)*(x-1)/(x-exp(z*(x-1))):
    ser := series(gf, z, 12): p := n -> normal(n!*coeff(ser, z, n)):
    seq(seq(coeff(p(n),x,k), k=0..n), n=0..10);
Previous Showing 11-19 of 19 results.