A185158
Triangular array read by rows: T(n,k) (n>=1, 0<=k<=n-1, except 0<=k<=1 when n=1) = coefficient of x^k in expansion of (1/n)*Sum_{d|n} (mobius(d)*(1+x^d)^(n/d)).
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 3, 5, 5, 3, 1, 0, 1, 3, 7, 8, 7, 3, 1, 0, 1, 4, 9, 14, 14, 9, 4, 1, 0, 1, 4, 12, 20, 25, 20, 12, 4, 1, 0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 0, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1, 0, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 0, 1, 6, 26, 70, 143, 212, 245, 212, 143, 70, 26, 6, 1
Offset: 1
The first few polynomials are:
1+x
x
x+x^2
x+x^2+x^3
x+2*x^2+2*x^3+x^4
x+2*x^2+3*x^3+2*x^4+x^5
x+3*x^2+5*x^3+5*x^4+3*x^5+x^6
...
The triangle begins:
[ 1] 1, 1,
[ 2] 0, 1,
[ 3] 0, 1, 1,
[ 4] 0, 1, 1, 1,
[ 5] 0, 1, 2, 2, 1,
[ 6] 0, 1, 2, 3, 2, 1,
[ 7] 0, 1, 3, 5, 5, 3, 1,
[ 8] 0, 1, 3, 7, 8, 7, 3, 1,
[ 9] 0, 1, 4, 9, 14, 14, 9, 4, 1,
[10] 0, 1, 4, 12, 20, 25, 20, 12, 4, 1,
[11] 0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1,
[12] 0, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1,
[13] 0, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1,
[14] 0, 1, 6, 26, 70, 143, 212, 245, 212, 143, 70, 26, 6, 1
...
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Joerg Arndt, Matters Computational (The Fxtbook), section 18.3.1 "Binary necklaces with fixed density", p. 382.
- Romeo Meštrović, Different classes of binary necklaces and a combinatorial method for their enumerations, arXiv:1804.00992 [math.CO], 2018.
- Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160. See Example 1.
-
with(numtheory);
W:=r->expand((1/r)*add(mobius(d)*(1+x^d)^(r/d), d in divisors(r)));
for n from 1 to 14 do
lprint(W(n));
od:
for n from 1 to 14 do
lprint(seriestolist(series(W(n),x,50)));
od:
-
T[n_, k_] := DivisorSum[GCD[n, k], MoebiusMu[#] Binomial[n/#, k/#]&]/n; Table[T[n, k], {n, 1, 14}, {k, 0, Max[1, n-1]}] // Flatten (* Jean-François Alcover, Dec 02 2015 *)
-
p(n) = if(n<=0, n==0, 'a0 + 1/n * sumdiv(n, d, moebius(d)*(1+x^d)^(n/d) ));
/* print triangle: */
for (n=1,17, v=Vec( polrecip(Pol(p(n),x)) ); v[1]-='a0; print(v) );
/* Joerg Arndt, Oct 21 2012 */
-
T(n,k) = 1/n * sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d,k/d) );
/* print triangle: */
{ for (n=1, 17, for (k=0, max(1,n-1), print1(T(n,k),", "); ); print(); ); }
/* Joerg Arndt, Oct 21 2012 */
A338113
Triangle read by rows: T(n,k) is the number of oriented colorings of the faces (and peaks) of a regular n-dimensional simplex using exactly k colors. Row n has C(n+1,3) columns.
Original entry on oeis.org
1, 1, 3, 3, 2, 1, 38, 1080, 14040, 85500, 274104, 493920, 504000, 272160, 60480, 1, 3502, 9743106, 3017318368, 249756082950, 8612276962188, 156010151929968, 1699145259725088, 12107373916276800, 59649257217110400
Offset: 2
Triangle begins with T(2,1):
1
1 3 3 2
1 38 1080 14040 85500 274104 493920 504000 272160 60480
...
For T(3,2)=3, the tetrahedron has one, two, or three faces (vertices) of one color.
-
m=2; (* dimension of color element, here a triangular face *)
lw[n_, k_]:=lw[n, k]=DivisorSum[GCD[n, k], MoebiusMu[#]Binomial[n/#, k/#]&]/n (*A051168*)
cxx[{a_, b_}, {c_, d_}]:={LCM[a, c], GCD[a, c] b d}
compress[x:{{, } ...}] := (s=Sort[x]; For[i=Length[s], i>1, i-=1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]]+=s[[i, 2]]; s=Delete[s, i], Null]]; s)
combine[a : {{, } ...}, b : {{, } ...}] := Outer[cxx, a, b, 1]
CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *)
CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n}, m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]]
CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]]
pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#, 2]]], pc[#] j^Total[CX[#, m+1]][[2]], 0] & /@ IntegerPartitions[n+1]]/((n+1)!/2)]
array[n_, k_] := row[n] /. j -> k
Table[LinearSolve[Table[Binomial[i,j],{i,Binomial[n+1,m+1]},{j,Binomial[n+1,m+1]}], Table[array[n,k],{k,Binomial[n+1,m+1]}]], {n,m,m+4}] // Flatten
A371992
Number of different closest packings of equal spheres for rhombohedral crystals having repeat period n.
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 5, 8, 15, 23, 41, 70, 126, 223, 406, 740, 1370, 2545, 4769, 8977, 16985, 32261, 61469, 117488, 225060, 432159, 831235, 1601796, 3090926, 5973198, 11556533, 22385600, 43405353, 84247085, 163661488, 318209920, 619181766, 1205733457, 2349558582, 4581555964, 8939468450, 17453081143, 34094082857
Offset: 1
-
fa[p_,q_] := fa[p,q] = (p+q-1)!/(p!q!) - Sum[fa[p/d,q/d]/d, {d, Rest[Intersection@@(Divisors/@{p,q})]}]; (*A051168(p+q,p); Iglesias Eq. (1)*)
fb[p_,q_] := fb[p,q] = (Quotient[p,2]+Quotient[q,2])!/(Quotient[p,2]!Quotient[q,2]!) - Sum[fb[p/d,q/d], {d, Rest[Intersection@@(Divisors/@{p,q})]}]; (*A180424(p+q,p); Eq. (2)*)
am[p_] := am[p] = 2^(p-1) - Sum[am[p/d], {d, Rest@Divisors@p}]; (*A000740; Eq. (6)*)
atf[p_] := atf[p] = 2^(p-1)/p - Sum[atf[p/d]/d, {d, Select[Rest@Divisors@p, OddQ]}];(*A000048; Eq. (9)*)
a[n_] := Sum[With[{p=n-q}, fa[p,q]+fb[p,q] + If[p==q, am[p]+atf[p]-fa[p,q]-fb[p,q], 0] / 2], {q, Select[Range[n/2], !Divisible[n-2#,3]& (*the opposite condition would give A371991*)]}] / 2; (* Eq. (5) *)
Table[a[n], {n, 2, 40}] (* Andrei Zabolotskii, May 30 2025 *)
-
apply( {A371992(n)=sum(q=1, n\2, if((n-2*q)%3, A051168(n,q)+A180424(n,q)))/2}, [1..40]) \\ M. F. Hasler, Jun 05 2025
Offset changed to 1 and a(1) = 0 prefixed by
M. F. Hasler, Jun 05 2025
A123223
Triangle read by rows: T(n,k) = number of ternary Lyndon words of length n with exactly k 1's.
Original entry on oeis.org
1, 2, 1, 1, 2, 0, 2, 4, 2, 0, 3, 8, 5, 2, 0, 6, 16, 16, 8, 2, 0, 9, 32, 38, 26, 9, 2, 0, 18, 64, 96, 80, 40, 12, 2, 0, 30, 128, 220, 224, 137, 56, 13, 2, 0, 56, 256, 512, 596, 448, 224, 74, 16, 2, 0, 99, 512, 1144, 1536, 1336, 806, 332, 96, 17, 2, 0, 186, 1024, 2560, 3840, 3840
Offset: 0
Triangle begins:
1;
2, 1;
1, 2, 0;
2, 4, 2, 0;
3, 8, 5, 2, 0;
6, 16, 16, 8, 2, 0;
9, 32, 38, 26, 9, 2, 0;
18, 64, 96, 80, 40, 12, 2, 0;
T(n,1) = 2^(n-1) because all words beginning with a 1 and consisting of the rest 2's or 3's are ternary Lyndon words with exactly one 1.
A289386
Number of rounds of 'deal one, skip one' shuffling required to return a deck of n cards to its original order.
Original entry on oeis.org
1, 2, 3, 2, 5, 6, 5, 4, 6, 6, 15, 12, 12, 30, 15, 4, 17, 18, 10, 20, 21, 14, 24, 90, 63, 26, 27, 18, 66, 12, 210, 12, 33, 90, 35, 30, 110, 120, 120, 26, 41, 42, 105, 30, 45, 30, 60, 48, 120, 50, 42, 510, 53, 1680, 120, 1584, 57, 336, 276, 60, 2665, 720, 8415
Offset: 1
Cards are labeled 'A', 'B', 'C', etc. 'ABCD' is a deck with 'A' on top, 'D' on the bottom.
For n = 4:
Round 1:
Hand: ABCD Table: [empty] - initial state of Round 1
Hand: BCD Table: A - Deal one
Hand: CDB Table: A - Skip one
Hand: DB Table: CA - Deal one
Hand: BD Table: CA - Skip one
Hand: D Table: BCA - Deal one
Hand: D Table: BCA - Skip one
Hand: [empty] Table: DBCA - Deal one, end of Round 1
Round 2:
Hand: DBCA Table: [empty] - Initial state of Round 2
Hand: BCA Table: D - Deal one
Hand: CAB Table: D - Skip one
Hand: AB Table: CD - Deal one
Hand: BA Table: CD - Skip one
Hand: A Table: BCD - Deal one
Hand: A Table: BCD - Skip one
Hand [empty] Table: ABCD - Deal one, end of Round 2
The deck of 4 cards is in its original order ('ABCD') after 2 rounds, so a(4) = 2.
-
// see link
-
F:= proc(n)
local deck, table, i;
deck:= [$1..n];
table:= NULL;
for i from 1 to n-1 do
table:= deck[1],table;
deck:= deck[[$3..nops(deck),2]];
od:
ilcm(op(map(nops,convert([deck[1],table],'disjcyc'))));
end proc:
map(F, [$1..100]); # Robert Israel, Jul 06 2017
-
P[n_, i_] := Module[{d = 2i - 1}, While[d < n, d *= 2]; 2n - d];
Follow[s_, f_] := Module[{t = f[s], k = 1}, While[t > s, k++; t = f[t]]; If[s == t, k, 0]];
CyclePoly[n_, x_] := Module[{q = 0}, For[i = 1, i <= n, i++, l = Follow[i, P[n, #]&]; If[l != 0, q += x^l]]; q];
a[n_] := Module[{q = CyclePoly[n, x], m = 1}, For[i = 1, i <= Exponent[q, x], i++, If[Coefficient[q, x, i] != 0, m = LCM[m, i]]]; m];
Array[a, 60] (* Jean-François Alcover, Apr 09 2020, after Andrew Howroyd *)
-
deal(v)=my(deck=List(v),new=List(),cutoff=4000+#v,i=1); while(#deck>=i, listput(new,deck[i]); if(i++>#deck, break); listput(deck, deck[i]); if(#deck>cutoff, deck=List(deck[i+1..#deck]); i=0); i++); Vecrev(new)
ordered(v)=for(i=1,#v, if(v[i]!=i, return(0))); 1
a(n)=my(v=[1..n],t=1); while(!ordered(v=deal(v)), t++); t \\ Charles R Greathouse IV, Jul 06 2017
-
\\ alternative for larger n such as 2^n.
P(n,i)=my(d=2*i-1); while(ds, k++; t=f(t)); if(s==t, k, 0)}
CyclePoly(n, x)={my(q=0); for(i=1, n, my(l=Follow(i, j->P(n, j))); if(l, q+=x^l)); q}
a(n)={my(q=CyclePoly(n, x), m=1); for(i=1, poldegree(q), if(polcoeff(q, i), m=lcm(m, i))); m} \\ Andrew Howroyd, Nov 11 2017
A338114
Triangle read by rows: T(n,k) is the number of unoriented colorings of the faces (and peaks) of a regular n-dimensional simplex using exactly k colors. Row n has C(n+1,3) columns.
Original entry on oeis.org
1, 1, 3, 3, 1, 1, 32, 693, 7720, 44150, 138312, 247380, 252000, 136080, 30240, 1, 2134, 4971504, 1513872568, 124978335900, 4307090369304, 78010256156784, 849590196841344, 6053725780061400, 29824685516682000, 105382759395846240, 273441179492268480
Offset: 2
Triangle begins with T(2,1):
1
1 3 3 1
1 32 693 7720 44150 138312 247380 252000 136080 30240
...
For T(3,2)=3, the tetrahedron has one, two, or three faces (vertices) of one color. For T(3,4)=1, each of the four tetrahedron faces (vertices) is a different color.
-
m=2; (* dimension of color element, here a triangular face *)
lw[n_, k_]:=lw[n, k]=DivisorSum[GCD[n, k], MoebiusMu[#]Binomial[n/#, k/#]&]/n (*A051168*)
cxx[{a_, b_}, {c_, d_}]:={LCM[a, c], GCD[a, c] b d}
compress[x:{{, } ...}] := (s=Sort[x]; For[i=Length[s], i>1, i-=1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]]+=s[[i, 2]]; s=Delete[s, i], Null]]; s)
combine[a : {{, } ...}, b : {{, } ...}] := Outer[cxx, a, b, 1]
CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *)
CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n}, m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]]
CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]]
pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
row[n_Integer] := row[n] = Factor[Total[pc[#] j^Total[CX[#, m+1]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
array[n_, k_] := row[n] /. j -> k
Table[LinearSolve[Table[Binomial[i,j],{i,Binomial[n+1,m+1]},{j,Binomial[n+1,m+1]}], Table[array[n,k],{k,Binomial[n+1,m+1]}]], {n,m,m+4}] // Flatten
A338115
Triangle read by rows: T(n,k) is the number of chiral pairs of colorings of the faces (and peaks) of a regular n-dimensional simplex using exactly k colors. Row n has C(n+1,3) columns.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 6, 387, 6320, 41350, 135792, 246540, 252000, 136080, 30240, 0, 1368, 4771602, 1503445800, 124777747050, 4305186592884, 77999895773184, 849555062883744, 6053648136215400, 29824571700428400
Offset: 2
Triangle begins with T(2,1):
0
0 0 0 1
0 6 387 6320 41350 135792 246540 252000 136080 30240
...
For T(4,4)=1, each of the four tetrahedron faces (vertices) is a different color.
-
m=2; (* dimension of color element, here a triangular face *)
lw[n_, k_]:=lw[n, k]=DivisorSum[GCD[n, k], MoebiusMu[#]Binomial[n/#, k/#]&]/n (*A051168*)
cxx[{a_, b_}, {c_, d_}]:={LCM[a, c], GCD[a, c] b d}
compress[x:{{, } ...}] := (s=Sort[x]; For[i=Length[s], i>1, i-=1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]]+=s[[i, 2]]; s=Delete[s, i], Null]]; s)
combine[a : {{, } ...}, b : {{, } ...}] := Outer[cxx, a, b, 1]
CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *)
CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n}, m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]]
CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]]
pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#, 2]]], 1, -1] pc[#] j^Total[CX[#, m+1]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
array[n_, k_] := row[n] /. j -> k
Table[LinearSolve[Table[Binomial[i,j],{i,Binomial[n+1,m+1]},{j,Binomial[n+1,m+1]}], Table[array[n,k],{k,Binomial[n+1,m+1]}]], {n,m,m+4}] // Flatten
A338116
Triangle read by rows: T(n,k) is the number of achiral colorings of the faces (and peaks) of a regular n-dimensional simplex using exactly k colors. Row n has C(n+1,3) columns.
Original entry on oeis.org
1, 1, 3, 3, 0, 1, 26, 306, 1400, 2800, 2520, 840, 0, 0, 0, 1, 766, 199902, 10426768, 200588850, 1903776420, 10360383600, 35133957600, 77643846000, 113816253600, 109880971200, 67199932800, 23610787200, 3632428800, 0, 0, 0, 0, 0, 0
Offset: 2
Triangle begins with T(2,1):
1
1 3 3 0
1 26 306 1400 2800 2520 840 0 0 0
1 766 199902 10426768 200588850 1903776420 10360383600 35133957600 ...
...
For T(3,3)=3, one of the three colors appears on two faces (vertices) of the tetrahedron.
-
m=2; (* dimension of color element, here a triangular face *)
lw[n_, k_]:=lw[n, k]=DivisorSum[GCD[n, k], MoebiusMu[#]Binomial[n/#, k/#]&]/n (*A051168*)
cxx[{a_, b_}, {c_, d_}]:={LCM[a, c], GCD[a, c] b d}
compress[x:{{, } ...}] := (s=Sort[x]; For[i=Length[s], i>1, i-=1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]]+=s[[i, 2]]; s=Delete[s, i], Null]]; s)
combine[a : {{, } ...}, b : {{, } ...}] := Outer[cxx, a, b, 1]
CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *)
CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n}, m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]]
CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]]
pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
row[n_Integer] := row[n] = Factor[Total[If[OddQ[Total[1-Mod[#, 2]]], pc[#] j^Total[CX[#, m+1]][[2]], 0] & /@ IntegerPartitions[n+1]]/((n+1)!/2)]
array[n_, k_] := row[n] /. j -> k
Table[LinearSolve[Table[Binomial[i,j],{i,Binomial[n+1,m+1]},{j,Binomial[n+1,m+1]}], Table[array[n,k],{k,Binomial[n+1,m+1]}]], {n,m,m+4}] // Flatten
A011845
a(n) = floor( binomial(n,8)/9).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 18, 55, 143, 333, 715, 1430, 2701, 4862, 8398, 13996, 22610, 35530, 54479, 81719, 120175, 173586, 246675, 345345, 476905, 650325, 876525, 1168700, 1542684, 2017356, 2615091, 3362260, 4289780, 5433721, 6835972, 8544965, 10616471
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-8,28,-56,70,-56,28,-8,1).
A303979
Triangle read by rows: T(n,k) is the number of cyclic unimodal permutations of length n with a peak at position k.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 1, 0, 0, 1, 2, 3, 2, 1, 0, 0, 1, 3, 4, 4, 3, 1, 0, 0, 1, 3, 6, 8, 6, 3, 1, 0, 0, 1, 3, 9, 13, 12, 8, 4, 1, 0, 0, 1, 4, 11, 19, 23, 19, 11, 4, 1, 0, 0, 1, 5, 13, 27, 39, 39, 27, 13, 5, 1, 0
Offset: 1
For n = 5, there are 6 unimodal cyclic permutations: 234561, 235641, 246531, 345621, 465321. There are T(6,1) = 0 with peak at position 1, T(6,2) = 1 with peak at position 2, T(6,3) = 1 with peak at position 3, T(6,4) = 2 with peak at position 4, T(6,5) = 1 with peak at position 5, and T(6,6) = 0 with peak at position 6.
Starting at n=1 with 1 <= k <= n, the triangle begins:
0,
0, 0,
0, 1, 0,
0, 1, 1, 0,
0, 1, 1, 1, 0,
0, 1, 1, 2, 1, 0,
0, 1, 2, 3, 2, 1, 0,
-
t051168(n,k) = if (n==0, 1, (1/n) * sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d,k/d)));
T(n, k) = my(t=sum(j=1, k-1, (-1)^(k+j+1)*t051168(n,j))); if (!(n % 2), t += (-1)^(k+1)*sum(j=1, k-1, if (((n-j) % 4) == 2, t051168(n/2, j/2)))); t;
tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 16 2018
Comments