cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A110085 Numbers k such that sigma(k) - phi(k) < tau(k)^omega(k), where sigma = A000203, phi = A000010, tau = A000005 and omega = A001221.

Original entry on oeis.org

1, 6, 10, 12, 18, 20, 24, 30, 36, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 198, 204, 210, 220, 222, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258, 260, 264, 266
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 11 2005

Keywords

Crossrefs

Programs

  • Haskell
    a110085 n = a110085_list !! (n-1)
    a110085_list = filter (\x -> a051612 x < a110088 x) [1..]
    -- Reinhard Zumkeller, Aug 05 2014
  • Mathematica
    q[k_] := DivisorSigma[1, k] - EulerPhi[k] < DivisorSigma[0, k]^PrimeNu[k]; Select[Range[300], q] (* Amiram Eldar, Sep 15 2024 *)
  • PARI
    is(n)=sigma(n)-eulerphi(n)Charles R Greathouse IV, Feb 14 2013
    

Formula

A051612(a(n)) < A110088(a(n)).

A110087 Numbers k such that sigma(k) - phi(k) > tau(k)^omega(k), where sigma = A000203, phi = A000010, tau = A000005 and omega = A001221.

Original entry on oeis.org

4, 8, 9, 14, 16, 21, 22, 25, 26, 27, 28, 32, 33, 34, 35, 38, 39, 40, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 64, 65, 68, 69, 72, 74, 75, 76, 77, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 11 2005

Keywords

Crossrefs

Programs

  • Haskell
    a110087 n = a110087_list !! (n-1)
    a110087_list = filter (\x -> a051612 x > a110088 x) [1..]
    -- Reinhard Zumkeller, Aug 05 2014
  • Mathematica
    q[k_] := DivisorSigma[1, k] - EulerPhi[k] > DivisorSigma[0, k]^PrimeNu[k]; Select[Range[120], q] (* Amiram Eldar, Sep 15 2024 *)
  • PARI
    is(n)=sigma(n)-eulerphi(n)>numdiv(n)^omega(n) \\ Charles R Greathouse IV, Feb 19 2013
    

Formula

A051612(a(n)) > A110088(a(n)).

A240960 Numbers m such that sigma(m) - phi(m) = tau(m)^omega(m), where sigma=A000203, phi=A000010, tau=A000005 and omega=A001221.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 05 2014

Keywords

Comments

a(n) = A182140(n) for n <= 35.
All primes p are in the sequence since (p+1) - (p-1) = 2^1. The first composites are 15, 119748396, 139254850, 187768485, 1420027536, 3991789984. A182140 seems unrelated. - Jens Kruse Andersen, Aug 05 2014

Crossrefs

Programs

  • Haskell
    a240960 n = a240960_list !! (n-1)
    a240960_list = filter (\x -> a051612 x == a110088 x) [1..]
    
  • Maple
    with(numtheory):
    filter:= n -> sigma(n) - phi(n) = tau(n)^nops(factorset(n)):
    select(filter, [$1..1000]); # Robert Israel, Aug 05 2014
  • Mathematica
    Select[Range[300], DivisorSigma[1, #] - EulerPhi[#] == DivisorSigma[0, #]^PrimeNu[#]&] (* Jean-François Alcover, Mar 08 2019 *)
  • PARI
    is(n)=my(f=factor(n)); sigma(f)-eulerphi(f)==numdiv(f)^omega(f) \\ Charles R Greathouse IV, Nov 26 2014
  • Python
    from sympy import totient,divisors,divisor_count,primefactors
    filter(lambda x:sum(divisors(x))-totient(x)==divisor_count(x)**len(primefactors(x)), range(1,10**5)) # Chai Wah Wu, Aug 05 2014
    

A292786 a(n) = psi(n) - phi(n).

Original entry on oeis.org

0, 2, 2, 4, 2, 10, 2, 8, 6, 14, 2, 20, 2, 18, 16, 16, 2, 30, 2, 28, 20, 26, 2, 40, 10, 30, 18, 36, 2, 64, 2, 32, 28, 38, 24, 60, 2, 42, 32, 56, 2, 84, 2, 52, 48, 50, 2, 80, 14, 70, 40, 60, 2, 90, 32, 72, 44, 62, 2, 128, 2, 66, 60, 64, 36, 124, 2, 76, 52, 120, 2, 120, 2, 78, 80, 84, 36, 144
Offset: 1

Views

Author

Altug Alkan, Sep 23 2017

Keywords

Comments

Even numbers that are not the terms of this sequence are 12, 102, 114, 130, ...

Crossrefs

Programs

  • Mathematica
    psi[n_] := If[n < 1, 0, n Sum[ MoebiusMu[d]^2/d, {d, Divisors@ n}]]; Array[psi@# - EulerPhi@# &, 87] (* Robert G. Wilson v, Sep 23 2017 *)
  • PARI
    a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    a(n) = a001615(n) - eulerphi(n); \\ after Charles R Greathouse IV at A001615

Formula

a(n) = A001615(n) - A000010(n).
a(n) = 2 iff n is prime.
a(n) = 2*A069359(n) iff n is in A070915.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = 9/(2*Pi^2) = 0.455945... (A088245). - Amiram Eldar, Dec 05 2023

A071390 Least number m such that sigma(m) - phi(m) = n, or 0 if no such m exists.

Original entry on oeis.org

0, 2, 0, 0, 4, 0, 9, 0, 0, 6, 8, 0, 0, 10, 49, 15, 0, 14, 0, 21, 0, 27, 16, 12, 0, 22, 169, 33, 0, 26, 0, 39, 18, 20, 289, 65, 0, 34, 361, 51, 0, 38, 0, 28, 0, 0, 32, 95, 0, 46, 0, 24, 0, 45, 0, 115, 0, 0, 841, 161, 0, 58, 961, 30, 0, 62, 81, 63, 0, 0, 0, 155, 50, 40, 1369, 217, 0, 74
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Comments

For n <> 2, a(n) < n^2/4. - Robert Israel, Apr 02 2020

Examples

			n=255: a(255) = 16129 = 127^2, sigma(16129) = 16257, phi(16129) = 16002, 16257 - 16002 = 255 = n. Squares of primes are often solutions (4, 9, 49, 169, 289, 361, etc.).
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    for m from 2 to N^2/4 do
      v:= numtheory:-sigma(m)-numtheory:-phi(m);
      if v <= N and V[v]=0 then V[v]:= m fi
    od:
    convert(V,list); # Robert Israel, Apr 02 2020
  • Mathematica
    f[x_] := DivisorSigma[1, x]-EulerPhi[x] t=Table[0, {100}]; Do[c=f[n]; If[c<101&&t[[c]]==0, t[[c]]=n], {n, 1, 1000}]; t

Formula

a(n) = Min{x; A000203(x)-A000010(x)=n} or a(n)=0 if no solution exists.

A270836 Numbers k such that sigma(k-1) - phi(k-1) = (3*k-5)/2.

Original entry on oeis.org

3, 5, 9, 11, 17, 33, 65, 129, 231, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 119831, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2016

Keywords

Comments

Numbers k such that A051612(k-1) = (3*k-5)/2.
Numbers of the form 2^k + 1 for k >= 1 from A000051 are terms.
Prime terms are in A270778.

Examples

			17 is a term because sigma(16) - phi(16) = 31-8 = 23 = (3*17-5)/2.
		

Crossrefs

Programs

  • Magma
    [n: n in[2..10^7] | 2*(SumOfDivisors(n-1) - EulerPhi(n-1)) eq 3*n-5];
    
  • Mathematica
    Select[Range[10^6], 2 (DivisorSigma[1, # - 1] - EulerPhi[# - 1]) == 3 # - 5 &] (* Michael De Vlieger, Mar 24 2016 *)
  • PARI
    lista(nn) = {for(n=2, nn, if(sigma(n-1) - eulerphi(n-1) == (3*n-5)/2, print1(n, ", "))); } \\ Altug Alkan, Mar 23 2016

Extensions

a(30)-a(32) from Michel Marcus, Apr 05 2016
a(33)-a(35) from Giovanni Resta, Apr 11 2016

A036446 Not of form sigma(k) - phi(k).

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 12, 13, 17, 19, 21, 25, 29, 31, 37, 41, 43, 45, 46, 49, 51, 53, 55, 57, 58, 61, 65, 69, 70, 71, 77, 81, 82, 85, 89, 91, 93, 97, 99, 101, 103, 105, 109, 111, 113, 114, 115, 117, 118, 121, 125, 127, 130, 131, 133, 134, 137, 139, 141, 142, 145, 149, 151
Offset: 1

Views

Author

Keywords

Crossrefs

Complement of A112730.

A061367 Composite n such that sigma(n)-phi(n) divides sigma(n)+phi(n).

Original entry on oeis.org

15, 35, 95, 119, 143, 209, 287, 319, 323, 357, 377, 527, 559, 779, 899, 923, 989, 1007, 1045, 1189, 1199, 1343, 1349, 1763, 1919, 2159, 2261, 2507, 2639, 2759, 2911, 3239, 3339, 3553, 3599, 3827, 4031, 4147, 4607, 5049, 5183, 5207, 5249, 5459, 5543, 6439
Offset: 1

Views

Author

Joseph L. Pe, Feb 13 2002

Keywords

Comments

Primes trivially satisfy the defining condition.

Examples

			sigma(15)-phi(15) = 24-8 = 16 divides sigma(15)-phi(15)=24+8 = 32, so 15 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{a = DivisorSigma[1, n], b = EulerPhi[n]}, Mod[(a + b), (a - b)] == 0]; Select[Range[2, 10^4], (f[ # ] && ! PrimeQ[ # ]) &]
    cnQ[n_]:=With[{s=DivisorSigma[1,n],p=EulerPhi[n]},Mod[s+p,s-p]==0]; Select[Range[6500],CompositeQ[#]&&cnQ[#]&] (* Harvey P. Dale, Jun 14 2025 *)

Formula

It seems that a(n) is asymptotic to c*n^2, 22*n^2. - Benoit Cloitre, Sep 17 2002

A071391 Least number m such that sigma(m) + phi(m) = n or 0 if no such number exists.

Original entry on oeis.org

0, 1, 0, 2, 0, 3, 0, 0, 4, 5, 0, 0, 0, 6, 0, 0, 0, 0, 8, 0, 0, 10, 0, 0, 0, 13, 0, 0, 0, 14, 0, 12, 0, 17, 0, 0, 0, 19, 16, 0, 0, 0, 0, 21, 18, 22, 0, 0, 0, 20, 25, 0, 0, 26, 0, 0, 0, 27, 0, 0, 0, 31, 0, 0, 0, 0, 0, 24, 0, 34, 0, 35, 0, 37, 0, 0, 0, 38, 32, 30, 0, 41, 0, 0, 0, 43, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Examples

			n=256: a(256) = 110, sigma(110) + phi(110) = 216 + 40 = 256 = n and no positive integer k < 110 has sigma(k) + phi(k) = 256.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]+EulerPhi[x] t=Table[0, {100}]; Do[c=f[n]; If[c<101&&t[[c]]==0, t[[c]]=n], {n, 1, 1000000}]; t
  • PARI
    a(n) = for(m=1, n, if(sigma(m)+eulerphi(m)==n, return(m))); 0; \\ Jinyuan Wang, Jul 29 2020
    
  • PARI
    first(n) = { my(v = vector(n)); for(i = 1, n, c = sigma(i) + eulerphi(i); if(c <= n, if(v[c] == 0, v[c] = i ) ) ); v } \\ David A. Corneth, Jul 30 2020

Formula

a(n) = Min{x; A000203(x)+A000010(x)=n} or a(n) = 0 if no solution exists.

A077088 a(n) = phi(sigma(n) - phi(n)), where phi is Euler's totient function and sigma is the sum of divisors function, with a(1) = 0.

Original entry on oeis.org

0, 1, 1, 4, 1, 4, 1, 10, 6, 6, 1, 8, 1, 6, 8, 22, 1, 20, 1, 16, 8, 12, 1, 24, 10, 8, 10, 20, 1, 32, 1, 46, 12, 18, 8, 78, 1, 12, 16, 36, 1, 24, 1, 32, 18, 20, 1, 36, 8, 72, 16, 36, 1, 32, 16, 32, 20, 30, 1, 72, 1, 20, 32, 72, 12, 60, 1, 46, 24, 32, 1, 108, 1, 24, 24, 48, 12, 48, 1, 60
Offset: 1

Views

Author

Labos Elemer, Nov 04 2002

Keywords

Comments

a(p) = 1 for p prime. Otherwise a(n) is even.

Examples

			a(10) = 6 because sigma(10) = 18 and phi(10) = 4, and so phi(18 - 4) = phi(14) = 6.
a(11) = 1 because sigma(11) = 12 and phi(11) = 10, so phi(12 - 10) = phi(2) = 1.
a(12) = 8 because sigma(12) = 28 and phi(12) = 4, so phi(28 - 4) = phi(24) = 8.
		

Crossrefs

Cf. A000010, A000203, A051612, A065387. See iterations in A077090-A077100.

Programs

Formula

a(1) = 0; and for n > 1, a(n) = A000010(A051612(n)).

Extensions

Value of a(1) clarified by Antti Karttunen, Mar 04 2018
Previous Showing 11-20 of 34 results. Next