cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A139601 Square array of polygonal numbers read by ascending antidiagonals: T(n, k) = (n + 1)*(k - 1)*k/2 + k.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 5, 9, 10, 0, 1, 6, 12, 16, 15, 0, 1, 7, 15, 22, 25, 21, 0, 1, 8, 18, 28, 35, 36, 28, 0, 1, 9, 21, 34, 45, 51, 49, 36, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 0, 1, 12, 30, 52, 75, 96, 112, 120, 117, 100, 66
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

A general formula for polygonal numbers is P(n,k) = (n-2)(k-1)k/2 + k, where P(n,k) is the k-th n-gonal number. - Omar E. Pol, Dec 21 2008

Examples

			The square array of polygonal numbers begins:
========================================================
Triangulars .. A000217: 0, 1,  3,  6, 10,  15,  21,  28,
Squares ...... A000290: 0, 1,  4,  9, 16,  25,  36,  49,
Pentagonals .. A000326: 0, 1,  5, 12, 22,  35,  51,  70,
Hexagonals ... A000384: 0, 1,  6, 15, 28,  45,  66,  91,
Heptagonals .. A000566: 0, 1,  7, 18, 34,  55,  81, 112,
Octagonals ... A000567: 0, 1,  8, 21, 40,  65,  96, 133,
9-gonals ..... A001106: 0, 1,  9, 24, 46,  75, 111, 154,
10-gonals .... A001107: 0, 1, 10, 27, 52,  85, 126, 175,
11-gonals .... A051682: 0, 1, 11, 30, 58,  95, 141, 196,
12-gonals .... A051624: 0, 1, 12, 33, 64, 105, 156, 217,
And so on ..............................................
========================================================
		

Crossrefs

Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).

Programs

  • Magma
    T:= func< n,k | k*((n+1)*(k-1) +2)/2 >;
    A139601:= func< n,k | T(n-k, k) >;
    [A139601(n,k): k in  [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[ T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
  • SageMath
    def T(n,k): return k*((n+1)*(k-1)+2)/2
    def A139601(n,k): return T(n-k, k)
    flatten([[A139601(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024

Formula

T(n,k) = A086270(n,k), k>0. - R. J. Mathar, Aug 06 2008
T(n,k) = (n+1)*(k-1)*k/2 +k, n>=0, k>=0. - Omar E. Pol, Jan 07 2009
From G. C. Greubel, Jul 12 2024: (Start)
t(n, k) = (k/2)*( (k-1)*(n-k+1) + 2), where t(n,k) is this array read by rising antidiagonals.
t(2*n, n) = A006003(n).
t(2*n+1, n) = A002411(n).
t(2*n-1, n) = A006000(n-1).
Sum_{k=0..n} t(n, k) = A006522(n+2).
Sum_{k=0..n} (-1)^k*t(n, k) = (-1)^n * A117142(n).
Sum_{k=0..n} t(n-k, k) = (2*n^4 + 34*n^2 + 48*n - 15 + 3*(-1)^n*(2*n^2 + 16*n + 5))/384. (End)

A220212 Convolution of natural numbers (A000027) with tetradecagonal numbers (A051866).

Original entry on oeis.org

0, 1, 16, 70, 200, 455, 896, 1596, 2640, 4125, 6160, 8866, 12376, 16835, 22400, 29240, 37536, 47481, 59280, 73150, 89320, 108031, 129536, 154100, 182000, 213525, 248976, 288666, 332920, 382075, 436480, 496496, 562496, 634865, 714000, 800310, 894216, 996151
Offset: 0

Views

Author

Bruno Berselli, Dec 08 2012

Keywords

Comments

Partial sums of A172073.
Apart from 0, all terms are in A135021: a(n) = A135021(A034856(n+1)) with n>0.

Crossrefs

Cf. convolution of the natural numbers (A000027) with the k-gonal numbers (* means "except 0"):
k= 2 (A000027 ): A000292;
k= 3 (A000217 ): A000332 (after the third term);
k= 4 (A000290 ): A002415 (after the first term);
k= 5 (A000326 ): A001296;
k= 6 (A000384*): A002417;
k= 7 (A000566 ): A002418;
k= 8 (A000567*): A002419;
k= 9 (A001106*): A051740;
k=10 (A001107*): A051797;
k=11 (A051682*): A051798;
k=12 (A051624*): A051799;
k=13 (A051865*): A055268.
Cf. similar sequences with formula n*(n+1)*(n+2)*(k*n-k+2)/12 listed in A264850.

Programs

  • Magma
    A051866:=func; [&+[(n-k+1)*A051866(k): k in [0..n]]: n in [0..37]];
    
  • Magma
    I:=[0,1,16,70,200]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    A051866[k_] := k (6 k - 5); Table[Sum[(n - k + 1) A051866[k], {k, 0, n}], {n, 0, 37}]
    CoefficientList[Series[x (1 + 11 x) / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)

Formula

G.f.: x*(1+11*x)/(1-x)^5.
a(n) = n*(n+1)*(n+2)*(3*n-2)/6.
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*(3*sqrt(3)*Pi + 27*log(3) - 17)/80.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(6*sqrt(3)*Pi - 64*log(2) + 37)/80. (End)

A147874 a(n) = (5*n-7)*(n-1).

Original entry on oeis.org

0, 3, 16, 39, 72, 115, 168, 231, 304, 387, 480, 583, 696, 819, 952, 1095, 1248, 1411, 1584, 1767, 1960, 2163, 2376, 2599, 2832, 3075, 3328, 3591, 3864, 4147, 4440, 4743, 5056, 5379, 5712, 6055, 6408, 6771, 7144, 7527, 7920, 8323, 8736, 9159, 9592, 10035
Offset: 1

Views

Author

Keywords

Comments

Zero followed by partial sums of A017305.
Appears to be related to various other sequences: a(n) = A036666(2*n-2) for n>1; a(n) = A115006(2*n-3) for n>1; a(n) = A118015(5*n-6) for n>1; a(n) = A008738(5*n-7) for n>1.
Even dodecagonal numbers divided by 4. - Omar E. Pol, Aug 19 2011

Crossrefs

Cf. A017305 (10n+3), A036666, A115006, A118015 (floor(n^2/5)), A008738 (floor((n^2+1)/5)), A294830.
Cf. A051624, A193872. - Omar E. Pol, Aug 19 2011

Programs

  • GAP
    List([1..50], n-> (5*n-7)*(n-1)); # G. C. Greubel, Jul 30 2019
  • Magma
    [ 0 ] cat [ &+[ 10*k+3: k in [0..n-1] ]: n in [1..50] ]; // Klaus Brockhaus, Nov 17 2008
    
  • Magma
    [ 5*n^2-2*n: n in [0..50] ];
    
  • Mathematica
    s=0;lst={s};Do[s+=n++ +3;AppendTo[lst,s],{n,0,6!,10}];lst
    Table[5n^2-12n+7,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{0,3,16},50] (* or *) PolygonalNumber[12,Range[0,100,2]]/4 (* Harvey P. Dale, Aug 08 2021 *)
  • PARI
    {m=50; a=7; for(n=0, m, print1(a=a+10*(n-1)+3, ","))} \\ Klaus Brockhaus, Nov 17 2008
    
  • Sage
    [(5*n-7)*(n-1) for n in (1..50)] # G. C. Greubel, Jul 30 2019
    

Formula

a(n) = Sum_{k=0..n-2} 10*k+3 = Sum_{k=0..n-2} A017305(k).
G.f.: x*(3 + 7*x)/(1-x)^3.
a(n) = 10*(n-2) + 3 + a(n-1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A193872(n-1)/4. - Omar E. Pol, Aug 19 2011
a(n+1) = A131242(10n+2). - Philippe Deléham, Mar 27 2013
E.g.f.: -7 + (7 - 7*x + 5*x^2)*exp(x). - G. C. Greubel, Jul 30 2019
Sum_{n>=2} 1/a(n) = A294830. - Amiram Eldar, Nov 15 2020
a(n) = A014105(n-1) + 3*A002378(n-2). - Leo Tavares, Mar 31 2025

Extensions

Edited by R. J. Mathar and Klaus Brockhaus, Nov 17 2008, Nov 20 2008

A153448 3 times 12-gonal (or dodecagonal) numbers: a(n) = 3*n*(5*n-4).

Original entry on oeis.org

0, 3, 36, 99, 192, 315, 468, 651, 864, 1107, 1380, 1683, 2016, 2379, 2772, 3195, 3648, 4131, 4644, 5187, 5760, 6363, 6996, 7659, 8352, 9075, 9828, 10611, 11424, 12267, 13140, 14043, 14976, 15939, 16932, 17955, 19008, 20091, 21204
Offset: 0

Views

Author

Omar E. Pol, Dec 26 2008

Keywords

Comments

This sequence is related to A172117 by 3*A172117(n) = n*a(n) - Sum_{i=0..n-1} a(i) and this is the case d=10 in the identity n*(3*n*(d*n - d + 2)/2) - Sum_{k=0..n-1} 3*k*(d*k - d + 2)/2 = n*(n+1)*(2*d*n - 2*d + 3)/2. - Bruno Berselli, Aug 26 2010

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=30: see Comments lines of A226492.

Programs

Formula

a(n) = 15*n^2 - 12*n = A051624(n)*3.
a(n) = 30*n + a(n-1) - 27 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(1 + 9*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=3, a(2)=36. - Harvey P. Dale, Jun 18 2014
E.g.f.: 3*x*(1 + 5*x)*exp(x). - G. C. Greubel, Aug 21 2016
a(n) = (4*n-2)^2 - (n-2)^2. In general, if P(k,n) is the k-th n-gonal number, then (2*k+1)*P(8*k+4,n) = ((3*k+1)*n-2*k)^2 - (k*n-2*k)^2. - Charlie Marion, Jul 29 2021

A255184 25-gonal numbers: a(n) = n*(23*n-21)/2.

Original entry on oeis.org

0, 1, 25, 72, 142, 235, 351, 490, 652, 837, 1045, 1276, 1530, 1807, 2107, 2430, 2776, 3145, 3537, 3952, 4390, 4851, 5335, 5842, 6372, 6925, 7501, 8100, 8722, 9367, 10035, 10726, 11440, 12177, 12937, 13720, 14526, 15355, 16207, 17082, 17980
Offset: 0

Views

Author

Luciano Ancora, Apr 03 2015

Keywords

Comments

If b(n,k) = n*((k-2)*n-(k-4))/2 is n-th k-gonal number, then b(n,k) = A000217(n) + (k-3)* A000217(n-1) (see Deza in References section, page 21, where the formula is attributed to Bachet de Méziriac).
Also, b(n,k) = b(n,k-1) + A000217(n-1) (see Deza and Picutti in References section, page 20 and 137 respectively, where the formula is attributed to Nicomachus). Some examples:
for k=4, A000290(n) = A000217(n) + A000217(n-1);
for k=5, A000326(n) = A000290(n) + A000217(n-1);
for k=6, A000384(n) = A000326(n) + A000217(n-1), etc.
This is the case k=25.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6 (23rd row of the table).
  • E. Picutti, Sul numero e la sua storia, Feltrinelli Economica (1977), pages 131-147.

Crossrefs

Cf. k-gonal numbers: A000217 (k=3), A000290 (k=4), A000326 (k=5), A000384 (k=6), A000566 (k=7), A000567 (k=8), A001106 (k=9), A001107 (k=10), A051682 (k=11), A051624 (k=12), A051865 (k=13), A051866 (k=14), A051867 (k=15), A051868 (k=16), A051869 (k=17), A051870 (k=18), A051871 (k=19), A051872 (k=20), A051873 (k=21), A051874 (k=22), A051875 (k=23), A051876 (k=24), this sequence (k=25), A255185 (k=26), A255186 (k=27), A161935 (k=28), A255187 (k=29), A254474 (k=30).

Programs

  • Magma
    k:=25; [n*((k-2)*n-(k-4))/2: n in [0..40]]; // Bruno Berselli, Apr 10 2015
    
  • Mathematica
    Table[n (23 n - 21)/2, {n, 40}]
  • PARI
    a(n)=n*(23*n-21)/2 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: x*(-1 - 22*x)/(-1 + x)^3.
a(n) = A000217(n) + 22*A000217(n-1) = A051876(n) + A000217(n-1), see comments.
Product_{n>=2} (1 - 1/a(n)) = 23/25. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 23*x^2/2). - Nikolaos Pantelidis, Feb 05 2023

A051876 24-gonal numbers: a(n) = n*(11*n-10).

Original entry on oeis.org

0, 1, 24, 69, 136, 225, 336, 469, 624, 801, 1000, 1221, 1464, 1729, 2016, 2325, 2656, 3009, 3384, 3781, 4200, 4641, 5104, 5589, 6096, 6625, 7176, 7749, 8344, 8961, 9600, 10261, 10944, 11649, 12376, 13125, 13896, 14689, 15504, 16341
Offset: 0

Views

Author

N. J. A. Sloane, Dec 15 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 24,... and the parallel line from 1, in the direction 1, 69,..., in the square spiral whose vertices are the generalized 24-gonal numbers. - Omar E. Pol, Jul 18 2012
This is also a star dodecagonal number: a(n) = A051624(n) + 12*A000217(n-1). - Luciano Ancora, Mar 30 2015

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.

Programs

Formula

a(n) = 22*n+a(n-1)-21, with n>0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
G.f.: x*(1+21*x)/(1-x)^3. - Colin Barker, Jan 10 2012
a(22*a(n)+232*n+1) = a(22*a(n)+232*n) + a(22*n+1). - Vladimir Shevelev, Jan 24 2014
Product_{n>=2} (1 - 1/a(n)) = 11/12. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 11*x^2). - Nikolaos Pantelidis, Feb 05 2023

A135703 a(n) = n*(7*n-2).

Original entry on oeis.org

0, 5, 24, 57, 104, 165, 240, 329, 432, 549, 680, 825, 984, 1157, 1344, 1545, 1760, 1989, 2232, 2489, 2760, 3045, 3344, 3657, 3984, 4325, 4680, 5049, 5432, 5829, 6240, 6665, 7104, 7557, 8024, 8505, 9000, 9509, 10032, 10569, 11120, 11685, 12264, 12857, 13464
Offset: 0

Views

Author

N. J. A. Sloane, Mar 04 2008

Keywords

Crossrefs

Cf. index to numbers of the form n*(d*n+10-d)/2 in A014106.
Cf. A185019.

Programs

Formula

a(n) = 5*n + 14*binomial(n,2).
From R. J. Mathar, Apr 21 2008: (Start)
O.g.f. x*(5+9*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = a(n-1) + 14*n - 9 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
a(n) = 4*A000217(n) + A051624(n). - Bruno Berselli, Feb 11 2011
E.g.f.: x*(5 + 7*x)*exp(x). - G. C. Greubel, Oct 29 2016

A007587 12-gonal (or dodecagonal) pyramidal numbers: a(n) = n*(n+1)*(10*n-7)/6.

Original entry on oeis.org

0, 1, 13, 46, 110, 215, 371, 588, 876, 1245, 1705, 2266, 2938, 3731, 4655, 5720, 6936, 8313, 9861, 11590, 13510, 15631, 17963, 20516, 23300, 26325, 29601, 33138, 36946, 41035, 45415, 50096, 55088, 60401, 66045, 72030, 78366, 85063, 92131, 99580, 107420, 115661
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 12, 21, 10, 0, 0, 0, ...] = (1, 13, 46, 110, ...). - Gary W. Adamson, Nov 28 2007
This sequence is related to A000566 by a(n) = n*A000566(n) - Sum_{i=0..n-1} A000566(i) and this is the case d=5 in the identity n*(n*(d*n-d+2)/2) - Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n - 2*d + 3)/6. - Bruno Berselli, Oct 18 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093645 ((10, 1) Pascal, column m=3). Partial sums of A051624.
Cf. A000566.
See similar sequences listed in A237616.

Programs

  • GAP
    List([0..45], n-> n*(n+1)*(10*n-7)/6); # G. C. Greubel, Aug 30 2019
  • Magma
    [ n eq 1 select 0 else Self(n-1)+(n-1)*(5*n-9): n in [1..45] ]; // Klaus Brockhaus, Nov 20 2008
    
  • Maple
    A007587:=n->n*(n+1)*(10*n-7)/6: seq(A007587(n), n=0..50); # Wesley Ivan Hurt, Oct 23 2014
  • Mathematica
    CoefficientList[Series[x(1+9x)/(1-x)^4, {x,0,45}], x] (* Vincenzo Librandi, Jun 20 2013 *)
    Table[n(n+1)(10n-7)/6,{n,0,50}] (* Harvey P. Dale, Nov 13 2013 *)
  • PARI
    a(n)=if(n,([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,4,-6,4]^n*[0;1;13;46])[1,1],0) \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    vector(45, n, n*(n-1)*(10*n-17)/6) \\ G. C. Greubel, Aug 30 2019
    
  • Sage
    [n*(n+1)*(10*n-7)/6 for n in (0..45)] # G. C. Greubel, Aug 30 2019
    

Formula

a(n) = (10*n-7)*binomial(n+1, 2)/3.
G.f.: x*(1+9*x)/(1-x)^4.
a(n) = Sum_{k=0..n} k*(5*k-4). - Klaus Brockhaus, Nov 20 2008
a(n) = Sum_{i=0..n-1} (n-i)*(10*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Oct 23 2014
E.g.f.: exp(x)*x*(6 + 33*x + 10*x^2)/6. - Elmo R. Oliveira, Aug 04 2025

A190816 a(n) = 5*n^2 - 4*n + 1.

Original entry on oeis.org

1, 2, 13, 34, 65, 106, 157, 218, 289, 370, 461, 562, 673, 794, 925, 1066, 1217, 1378, 1549, 1730, 1921, 2122, 2333, 2554, 2785, 3026, 3277, 3538, 3809, 4090, 4381, 4682, 4993, 5314, 5645, 5986, 6337, 6698, 7069, 7450, 7841, 8242, 8653, 9074
Offset: 0

Views

Author

Keywords

Comments

For n >= 2, hypotenuses of primitive Pythagorean triangles with m = 2*n-1, where the sides of the triangle are a = m^2 - n^2, b = 2*n*m, c = m^2 + n^2; this sequence is the c values, short sides (a) are A045944(n-1), and long sides (b) are A002939(n).

Crossrefs

Short sides (a) A045944(n-1), long sides (b) A002939(n).
Cf. A017281 (first differences), A051624 (a(n)-1), A202141.
Sequences of the form m*n^2 - 4*n + 1: -A131098 (m=0), A028872 (m=1), A056220 (m=2), A045944 (m=3), A016754 (m=4), this sequence (m=5), A126587 (m=6), A339623 (m=7), A080856 (m=8).

Programs

  • Magma
    [5*n^2 - 4*n + 1: n in [0..50]]; // Vincenzo Librandi, Jun 19 2011
    
  • Mathematica
    Table[5*n^2 - 4*n + 1, {n, 0, 100}]
    LinearRecurrence[{3,-3,1},{1,2,13},100] (* or *) CoefficientList[ Series[ (-10 x^2+x-1)/(x-1)^3,{x,0,100}],x] (* Harvey P. Dale, May 24 2011 *)
  • PARI
    a(n)=5*n^2-4*n+1 \\ Charles R Greathouse IV, Oct 16 2015
    
  • SageMath
    [5*n^2-4*n+1 for n in range(41)] # G. C. Greubel, Dec 03 2023

Formula

From Harvey P. Dale, May 24 2011: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=2, a(2)=13.
G.f.: (1 - x + 10*x^2)/(1-x)^3. (End)
E.g.f.: (1 + x + 5*x^2)*exp(x). - G. C. Greubel, Dec 03 2023

Extensions

Edited by Franklin T. Adams-Watters, May 20 2011

A152965 Twice 12-gonal numbers: a(n) = 2*n*(5*n-4).

Original entry on oeis.org

0, 2, 24, 66, 128, 210, 312, 434, 576, 738, 920, 1122, 1344, 1586, 1848, 2130, 2432, 2754, 3096, 3458, 3840, 4242, 4664, 5106, 5568, 6050, 6552, 7074, 7616, 8178, 8760, 9362, 9984, 10626, 11288, 11970, 12672, 13394, 14136, 14898, 15680, 16482, 17304, 18146, 19008
Offset: 0

Views

Author

Omar E. Pol, Dec 21 2008

Keywords

Crossrefs

Cf. A051624 (12-gonal numbers), A051874.
Cf. numbers of the form n*(n*k - k + 4)/2 listed in A226488 (this sequence is the case k=20). - Bruno Berselli, Jun 10 2013

Programs

Formula

a(n) = 2*A051624(n).
From Vincenzo Librandi, Jul 10 2012: (Start)
G.f.: 2*x*(1+9*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 2*exp(x)*x*(1 + 5*x).
a(n) = n + A051874(n). (End)
Previous Showing 11-20 of 48 results. Next