cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 136 results. Next

A068327 Arithmetic derivative of n^n.

Original entry on oeis.org

0, 0, 4, 27, 1024, 3125, 233280, 823543, 201326592, 2324522934, 70000000000, 285311670611, 142657607172096, 302875106592253, 100008061430022144, 3503151123046875000, 590295810358705651712, 827240261886336764177, 826274569581227289083904, 1978419655660313589123979
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 27 2002

Keywords

Comments

p prime: a(p) = A003415(p^p) = p^p.

Examples

			a(10) = A003415(10^10) = A003415(2^10 * 5^10) = 10^10 * (10/2 + 10/5) = 10^10 * (5 + 2) = 70000000000 by formula in A003415.
		

Crossrefs

Programs

  • Maple
    a:= n-> n^(n+1)*add(i[2]/i[1], i=ifactors(n)[2]):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 09 2015
    # alternative
    A068327 := proc(n)
            A003415(n^n) ;
    end proc:
    seq( A068327(n),n=0..10) ; # R. J. Mathar, Oct 19 2021
  • Mathematica
    a312[n_] := Sum[ StirlingS2[n, k]*n!/(n - k)!, {k, 0, n}]; a3415[n_] := With[ {fi = FactorInteger[n]}, n*Total[ fi[[All, 2]] / fi[[All, 1]] ] ]; a3415[0] = a3415[1] = 0; a[n_] := a3415[ a312[n] ]; Table[ a[n], {n, 1, 16}] (* Jean-François Alcover, Mar 27 2013 *)
  • Python
    from sympy import factorint
    def A068327(n): return sum((n**(n+1)*e//p for p,e in factorint(n).items())) if n > 1 else 0 # Chai Wah Wu, Jun 12 2022

Formula

a(n) = A003415(A000312(n)).
a(n) = n^n * A003415(n) = A000312(n) * A003415(n). - Alois P. Heinz, Jun 09 2015

A083348 Numbers k such that r(k) = Sum(e/p: k = Product(p^e)) > 1.

Original entry on oeis.org

8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 198
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 25 2003

Keywords

Comments

The number of terms not exceeding 10^m, for m = 1, 2, ..., are 1, 29, 318, 3174, 31763, 317813, 3177179, 31774009, 317745099, 3177373819, ... . Apparently, the asymptotic density of this sequence exists and equals 0.3177... . - Amiram Eldar, Jun 24 2022

Crossrefs

Cf. A003415, A072873, A051674, A083345, A083346, A083347, A168036, A369048 (characteristic function), A369049.
Subsequence of A100717.

Programs

  • Haskell
    a083348 n = a083348_list !! (n-1)
    a083348_list = filter ((> 0) . a168036) [1..]
    -- Reinhard Zumkeller, May 22 2015, May 10 2011
  • Mathematica
    ad[n_] := Switch[n, 0 | 1, 0, _, If[PrimeQ[n], 1, Sum[Module[ {p, e}, {p, e} = pe; n e/p], {pe, FactorInteger[n]}]]];
    Select[Range[1000], ad[#] > # &] (* Jean-François Alcover, May 04 2023 *)

Formula

A083345(a(n)) > A083346(a(n)).
A168036(a(n)) > 0. - Reinhard Zumkeller, May 22 2015

A100717 Numbers k having a prime divisor p such that p^p is the highest power of p that divides k.

Original entry on oeis.org

4, 12, 20, 27, 28, 36, 44, 52, 54, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 135, 140, 148, 156, 164, 172, 180, 188, 189, 196, 204, 212, 216, 220, 228, 236, 244, 252, 260, 268, 270, 276, 284, 292, 297, 300, 308, 316, 324, 332, 340, 348, 351, 356, 364, 372
Offset: 1

Views

Author

Leroy Quet, Dec 10 2004

Keywords

Comments

For each prime p, the sequence includes all k*p^p for k such that gcd(k,p)=1. - T. D. Noe
The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/p^p + 1/p^(p+1)) = 0.14682429539560371215... . - Amiram Eldar, Jun 25 2022

Examples

			54 is included because 3^3, but not 3^4, divides 54.
		

Crossrefs

Subsequences: A051674, A048102 \ {1}.

Programs

  • Haskell
    a100717 n = a100717_list !! (n-1)
    a100717_list = filter ((== 0) . a203908) [1..]
    -- Reinhard Zumkeller, Dec 24 2013
  • Mathematica
    fQ[n_] := Union[ Table[ #[[1]] == #[[2]]] & /@ FactorInteger[n]][[ -1]] == True; Select[ Range[2, 375], fQ[ # ] &] (* Robert G. Wilson v, Dec 14 2004 *)

Formula

A203908(a(n)) = 0. - Reinhard Zumkeller, Dec 24 2013

Extensions

More terms from T. D. Noe and Robert G. Wilson v, Dec 14 2004

A125137 a(n) = p^p + 1, where p = prime(n).

Original entry on oeis.org

5, 28, 3126, 823544, 285311670612, 302875106592254, 827240261886336764178, 1978419655660313589123980, 20880467999847912034355032910568, 2567686153161211134561828214731016126483470, 17069174130723235958610643029059314756044734432, 10555134955777783414078330085995832946127396083370199442518
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2007

Keywords

Crossrefs

See A125136 for factorizations. Cf. A088730, A125135.

Programs

Formula

a(n) = A051674(n)+1. - R. J. Mathar, Apr 23 2007

A342090 Numbers with at least one prime power p^e in their prime factorization such that p|e.

Original entry on oeis.org

4, 12, 16, 20, 27, 28, 36, 44, 48, 52, 54, 60, 64, 68, 76, 80, 84, 92, 100, 108, 112, 116, 124, 132, 135, 140, 144, 148, 156, 164, 172, 176, 180, 188, 189, 192, 196, 204, 208, 212, 216, 220, 228, 236, 240, 244, 252, 256, 260, 268, 270, 272, 276, 284, 292, 297, 300
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2021

Keywords

Comments

Numbers with a unitary divisor of the form p^(m*p) where p is a prime and m > 0.
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 1, 19, 188, 1883, 18825, 188244, 1882429, 18824297, 188242957, 1882429628, ...
The asymptotic density of this sequence is 1 - Product_{p prime} 1 - (p - 1)/(p*(p^p - 1)) = 0.18824296270011399086...

Examples

			4 = 2^2 is a term since 2 divides 2.
8 = 2^3 is not a term since 2 does not divide 3.
		

Crossrefs

Subsequence of A013929.
Cf. A072873, A369070 (characteristic function).

Programs

  • Mathematica
    q[n_] := AnyTrue[FactorInteger[n], Divisible[Last[#], First[#]] &]; Select[Range[2, 300], q]

Extensions

Wrong term 1 removed by Amiram Eldar, Jan 16 2024

A061789 a(n) = Sum_{k=1..n} prime(k)^prime(k).

Original entry on oeis.org

4, 31, 3156, 826699, 285312497310, 303160419089563, 827240565046755853740, 1979246896225360344977719, 20880469979094808259715377888286, 2567686153182091604540923022990731504371755
Offset: 1

Views

Author

Amarnath Murthy, May 25 2001

Keywords

Comments

a(n) is prime for n = 2, 4, and 24, and no other n up to at least 600. - Zak Seidov and Robert Israel, Apr 11 2025

Examples

			a(3) = 2^2 + 3^3 + 5^5 = 3156.
		

Crossrefs

Cf. A051674.

Programs

  • Maple
    p:= 1: s:= 0: S:= NULL:
    for k from 1 to 30 do
    p:= nextprime(p);
    s:= s + p^p;
    S:= S,s
    od:
    S; # Robert Israel, Apr 11 2025
  • Mathematica
    P3[n_] := Sum[Prime[i]^Prime[i], {i, 1, n}]; Table[P3[n], {n, 1, 10}] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
    Accumulate[#^#&/@Prime[Range[10]]] (* Harvey P. Dale, Apr 10 2015 *)
  • PARI
    a=n=0; forprime (p=2, 383, write("b061789.txt", n++, " ", a+=p^p)) \\ Harry J. Smith, Jul 28 2009
    
  • Python
    from itertools import accumulate, count, islice
    from sympy import prime
    def A061789_gen(): # generator of terms
        yield from accumulate(((p:=prime(k))**p for k in count(1)))
    A061789_list = list(islice(A061789_gen(),20)) # Chai Wah Wu, Jun 17 2022

Formula

Partial sums of A051674. - R. J. Mathar, Apr 26 2007

Extensions

Corrected and extended by Jason Earls, May 26 2001

A074583 Numbers k such that sopfr(k) = S(k), where sopfr = A001414 and S = A002034.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Jason Earls, Aug 24 2002

Keywords

Comments

These are the prime powers p^e with e <= p. - Reinhard Zumkeller, Dec 15 2003
Complement to A192135 with respect to A000961;

Crossrefs

Subsequence of A000961; A000040, A000430, and A051674 are subsequences.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a074583 n = a074583_list !! (n-1)
    a074583_list = 1 : f (singleton 2) a000040_list where
      f s ps'@(p:p':ps)
        | m == p      = p : f (insert (p*p) $ insert p' s') (p':ps)
        | m < spf^spf = m : f (insert (m*spf) s') ps'
        | otherwise   = m : f s' ps'
          where spf = a020639 m  -- smallest prime factor of m, cf. A020639
                (m, s') = deleteFindMin s
    -- Simpler version:
    a074583_list = map a000961 a192188_list
    -- Reinhard Zumkeller, Jun 05 2011, Jun 26 2011
    
  • Mathematica
    sopfr[n_] := Total[Times @@@ FactorInteger[n]];
    S[n_] := Module[{m = 1}, While[!IntegerQ[m!/n], m++]; m];
    Select[Range[1000], sopfr[#] == S[#]&] (* Jean-François Alcover, Nov 09 2017 *)
  • PARI
    isok(n) = my(f=factor(n)); n==1 || (#f~==1 && f[1, 1]>=f[1, 2]); \\ Seiichi Manyama, May 07 2021

Formula

a(n) = A000961(A192188(n)); A095874(a(n)) = A192188(n). - Reinhard Zumkeller, Jun 26 2011

A082949 Numbers of the form p^q * q^p, with distinct primes p and q.

Original entry on oeis.org

72, 800, 6272, 30375, 247808, 750141, 1384448, 37879808, 189267968, 235782657, 1313046875, 3502727631, 4437573632, 451508436992, 634465620819, 2063731785728, 7863818359375, 7971951402153, 188153927303168, 453238525390625, 1145440056788109
Offset: 1

Views

Author

Reinhard Zumkeller, May 26 2003

Keywords

Comments

A001221(a(n)) = 2;
A001222(a(n)) = A001414(a(n)) = A020639(a(n)) + A006530(a(n)) = A051904(a(n)) + A051903(a(n));
A020639(a(n)) = A051904(a(n));
A006530(a(n)) = A051903(a(n)).

Examples

			2^7 * 7^2 = 128*49 = 6272, therefore 6272 is in the sequence.
		

Crossrefs

Cf. A098096, numbers of the form 2^p * p^2.
Cf. A151800.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a082949 n = a082949_list !! (n-1)
    a082949_list = f $ singleton (2 ^ 3 * 3 ^ 2, 2, 3) where
       f s = y : f (if p' < q then insert (p' ^ q * q ^ p', p', q) s'' else s'')
             where s'' = insert (p ^ q' * q' ^ p, p, q') s'
                   p' = a151800 p; q' = a151800 q
                   ((y, p, q), s') = deleteFindMin s
    -- Reinhard Zumkeller, Feb 07 2015
  • Mathematica
    Take[Union[Select[Flatten[Table[If[p != q, Prime[p]^Prime[q]*Prime[q]^Prime[p]], {p, 100}, {q, 100}]], IntegerQ]], 30] (* Alonso del Arte, Oct 28 2005 *)
    Select[Range[10! ],Length[FactorInteger[ # ]]==2&&FactorInteger[ # ][[1,1]]==FactorInteger[ # ][[2,2]]&&FactorInteger[ # ][[1,2]]==FactorInteger[ # ][[2,1]]&] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2010 *)
    With[{nn=30},Take[Union[First[#]^Last[#] Last[#]^First[#]&/@ Subsets[ Prime[Range[nn]],{2}]],nn]] (* Harvey P. Dale, Aug 19 2012 *)
  • PARI
    term(p,q)=p^q*q^p;
    l=listcreate(465); for(m=1,30, for(n=m+1,31, listput(l,term(prime(m), prime(n))))); listsort(l) \\ Rick L. Shepherd, Sep 07 2003
    

Extensions

Corrected and extended by Rick L. Shepherd, Sep 07 2003

A117579 Numerator of Sum[i=1..n] 1/(p(i)^p(i)), p(i) = i-th prime.

Original entry on oeis.org

1, 31, 96983, 79870008269, 22787845491220720044859, 6901871132161346809864777612017764827, 5709505682874900155174610004469973097336266239002423739879, 11295798267103963562742898223286548990219261148710007871289771185589362412305596041
Offset: 1

Views

Author

Jonathan Vos Post, Mar 29 2006

Keywords

Examples

			1/4, 31/108, 96983/337500, 79870008269/277945762500, 22787845491220720044859/79301169838123235887500,
6901871132161346809864777612017764827/24018350267611933650627567399079537500
		

Crossrefs

Denominators = A076265.

Programs

  • Mathematica
    Numerator[Accumulate[1/#^#&/@Prime[Range[10]]]] (* Harvey P. Dale, Jan 24 2013 *)

Formula

a(n) = Numerator of Sum[i=1..n] 1/(p(i)^p(i)). a(n) = Numerator of Sum[i=1..n] 1/(A000040(i)^A000040(i)). a(n) = Numerator of Sum[i=1..n] 1/A051674(i).

Extensions

Corrected and extended by Harvey P. Dale, Jan 24 2013

A192015 Arithmetic derivative of prime powers: a(n) = A003415(A000961(n)).

Original entry on oeis.org

0, 1, 1, 4, 1, 1, 12, 6, 1, 1, 32, 1, 1, 1, 10, 27, 1, 1, 80, 1, 1, 1, 1, 14, 1, 1, 1, 192, 1, 1, 1, 1, 108, 1, 1, 1, 1, 1, 1, 1, 1, 22, 75, 1, 448, 1, 1, 1, 1, 1, 1, 1, 1, 26, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 405, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 34
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 26 2011

Keywords

Comments

a(A000040(n)) = 1; a(A002808(n)) > 1;
A001787, A027471, A100484, A079705 and A051674 are subsequences;
A001787 and A024622 give record values and where they occur;
A192016(n) = A003415(a(n)).

Programs

  • Haskell
    a192015 = a003415 . a000961  -- Reinhard Zumkeller, Apr 16 2014
    
  • Mathematica
    Join[{0}, Reap[For[n = 1, n <= 300, n++, f = FactorInteger[n]; If[Length[f] == 1, Sow[n*Total[Apply[#2/#1&, f, {1}]]]]]][[2, 1]]] (* Jean-François Alcover, Feb 21 2014 *)
  • Python
    from sympy import primepi, integer_nthroot, factorint
    def A192015(n):
        if n == 1: return 0
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return sum((m*e//p for p,e in factorint(m).items())) # Chai Wah Wu, Aug 15 2024

Formula

a(n) = A025474(n) * A025473(n)^(A025474(n) - 1).
Previous Showing 31-40 of 136 results. Next