cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 69 results. Next

A236257 a(n) = 2*n^2 - 7*n + 9.

Original entry on oeis.org

9, 4, 3, 6, 13, 24, 39, 58, 81, 108, 139, 174, 213, 256, 303, 354, 409, 468, 531, 598, 669, 744, 823, 906, 993, 1084, 1179, 1278, 1381, 1488, 1599, 1714, 1833, 1956, 2083, 2214, 2349, 2488, 2631, 2778, 2929, 3084, 3243, 3406, 3573, 3744, 3919, 4098, 4281, 4468
Offset: 0

Views

Author

Vladimir Shevelev, Jan 21 2014

Keywords

Comments

If zero polygonal numbers are ignored, then for n >= 3, the a(n)-th n-gonal number is a sum of the (a(n)-1)-th n-gonal number and the (2*n-3)-th n-gonal number.

Examples

			a(7)=58. This means that the 58th heptagonal number 8323 (cf. A000566) is a sum of two heptagonal numbers. We have 8323 = 8037 + 286 with indices in A000566 58,57,11.
		

Crossrefs

Programs

  • Mathematica
    Table[2 n^2 - 7 n + 9, {n, 0, 48}] (* Michael De Vlieger, Apr 19 2015 *)
    LinearRecurrence[{3,-3,1},{9,4,3},50] (* Harvey P. Dale, Nov 24 2017 *)
  • PARI
    Vec(-(18*x^2-23*x+9)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jan 21 2014

Formula

From Colin Barker, Jan 21 2014: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -(18*x^2 - 23*x + 9)/(x-1)^3. (End)
E.g.f.: exp(x)*(9 - 5*x + 2*x^2). - Elmo R. Oliveira, Nov 13 2024

A276819 a(n) = (9*n^2 - n)/2 + 1.

Original entry on oeis.org

1, 5, 18, 40, 71, 111, 160, 218, 285, 361, 446, 540, 643, 755, 876, 1006, 1145, 1293, 1450, 1616, 1791, 1975, 2168, 2370, 2581, 2801, 3030, 3268, 3515, 3771, 4036, 4310, 4593, 4885, 5186, 5496, 5815, 6143, 6480, 6826, 7181, 7545, 7918, 8300, 8691, 9091, 9500, 9918, 10345, 10781, 11226, 11680, 12143, 12615
Offset: 0

Views

Author

Yuriy Sibirmovsky, Sep 18 2016

Keywords

Comments

Diagonal of triangular spiral in A051682. The other 5 diagonals are given by A140064, A117625, A081267, A064225, A006137. See the link as well.
First differences are given by A017209.
72*a(n) - 71 is a perfect square. - Klaus Purath, Jan 14 2022

Crossrefs

Programs

  • Mathematica
    Table[(9*n^2-n)/2+1, {n,0,100}]
  • PARI
    Vec((1+2*x+6*x^2)/(1-x)^3 + O(x^60)) \\ Colin Barker, Sep 18 2016
    
  • PARI
    a(n) = (9*n^2 - n)/2 + 1; \\ Altug Alkan, Sep 18 2016

Formula

a(n) = (9*n^2 - n)/2 + 1.
a(n) = a(n-1) + 9*n - 5 with a(0) = 1.
From Colin Barker, Sep 18 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: (1 + 2*x + 6*x^2)/(1 - x)^3. (End)
From Klaus Purath, Jan 14 2022: (Start)
a(n) = A006137(n) - n.
A003215(a(n)) - A003215(a(n)-3) = A002378(9*n-1). (End)
E.g.f.: exp(x)*(2 + 8*x + 9*x^2)/2. - Stefano Spezia, Dec 25 2022

A077081 Fixed point when phi(sigma(n)+phi(n))=A077080 is iterated with initial value of n.

Original entry on oeis.org

1, 2, 2, 6, 6, 6, 6, 864, 864, 10, 10, 864, 864, 864, 864, 864, 864, 864, 864, 20, 20, 22, 22, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 48, 864, 46, 46, 48, 864, 864, 48, 864, 864, 48, 48, 48, 48, 58, 58
Offset: 1

Views

Author

Labos Elemer, Oct 28 2002

Keywords

Comments

A065387 when iterated seems to converge [tested for initial values below 1024]. On the other hand iterating A051682 often ends in cycle.
Iteration of phi(A065387())=phi(sigma()+phi()) seems to converge. Tested below n=1024. Critical values however arise. For example: n=534,556,557,580,624,702,710, etc. These initial values generate very large terms and i was unable to decide if they converge.
For n=1..1024 no more but 27 distinct fixed points arised:{1,2,6,10,..,3552,570240}

Examples

			n=225: results in iteration sequence of 44 terms: {225,522,444,...,471744,653312,570240}, a[25]=570240.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[DivisorSigma[1, x]+EulerPhi[x]] Table[FixedPoint[f, w], {w, 1, 256}]

Formula

a(n) = FixedPoint[A077080, n].

A131432 Triangle read by rows: (A000012 * A131431) + (A131431 * A000012) - A000012 as infinite lower triangular matrices.

Original entry on oeis.org

1, 4, 7, 7, 10, 13, 10, 13, 16, 19, 13, 16, 19, 22, 25, 16, 19, 22, 25, 28, 31, 19, 22, 25, 28, 31, 34, 37, 22, 25, 28, 31, 34, 37, 40, 43, 25, 28, 31, 34, 37, 40, 43, 46, 49, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67
Offset: 0

Views

Author

Gary W. Adamson, Jul 10 2007

Keywords

Comments

Left border = A016777, (1, 4, 7, 10, 13, ...).
Right border = A016921: (1, 7, 13, 19, 25, ...).
Row sums = A051682, 11-gonal numbers: (1, 11, 30, 58, 95, ...).

Examples

			First few rows of the triangle:
   1;
   4,  7;
   7, 10, 13;
  10, 13, 16, 19;
  13, 16, 19, 22, 25;
  16, 19, 22, 25, 28, 31;
  19, 22, 25, 28, 31, 34, 37;
  ...
		

Crossrefs

Extensions

a(28) ff. corrected and more terms from Georg Fischer, Jun 05 2023

A214420 Numbers not representable as the sum of three 11-gonal numbers.

Original entry on oeis.org

4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 68, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 91, 92
Offset: 1

Views

Author

T. D. Noe, Jul 17 2012

Keywords

Comments

It is conjectured that 12453 positive numbers are not the sum of three 11-gonal numbers.

References

  • R. K. Guy, Unsolved Problems in Number Theory, D3.

Crossrefs

Cf. A051682 (11-gonal numbers).

Programs

  • Mathematica
    nn = 900; hen = Table[n*(9*n-7)/2, {n, 0, nn}]; t = Table[0, {hen[[-1]]}]; Do[n = hen[[i]] + hen[[j]] + hen[[k]]; If[n <= hen[[-1]], t[[n]] = 1], {i, nn}, {j, i, nn}, {k, j, nn}]; Flatten[Position[t, 0]]

A235537 Expansion of (6 + 13*x - 8*x^2 - 8*x^3 + 6*x^4)/((1 + x)^2*(1 - x)^3).

Original entry on oeis.org

6, 19, 23, 41, 49, 72, 84, 112, 128, 161, 181, 219, 243, 286, 314, 362, 394, 447, 483, 541, 581, 644, 688, 756, 804, 877, 929, 1007, 1063, 1146, 1206, 1294, 1358, 1451, 1519, 1617, 1689, 1792, 1868, 1976, 2056, 2169, 2253, 2371, 2459, 2582, 2674, 2802, 2898
Offset: 0

Views

Author

Bruno Berselli, Jan 23 2014

Keywords

Crossrefs

Cf. A235332.

Programs

  • Magma
    [(6*n*(3*n+17)-(2*n+43)*(-1)^n+11)/16+8: n in [0..50]];
  • Mathematica
    Table[(6 n (3 n + 17) - (2 n + 43) (-1)^n + 11)/16 + 8, {n, 0, 50}]
    LinearRecurrence[{1,2,-2,-1,1},{6,19,23,41,49},80] (* Harvey P. Dale, Aug 22 2015 *)

Formula

G.f.: (6 + 13*x - 8*x^2 - 8*x^3 + 6*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (6*n*(3*n + 17) - (2*n + 43)*(-1)^n + 11)/16 + 8. The terms a(2k) are in A235332; the closed form of the terms a(2k+1) is n*(9*n+35)/2+19.

A253254 Largest prime factor of the n-th 11-gonal number.

Original entry on oeis.org

11, 5, 29, 19, 47, 7, 13, 37, 83, 23, 101, 13, 17, 5, 137, 73, 31, 41, 173, 13, 191, 23, 19, 109, 227, 59, 7, 127, 263, 31, 281, 29, 23, 11, 317, 163, 67, 43, 353, 181, 53, 43, 389, 199, 37, 47, 17, 31, 443, 113, 461, 53, 479, 61, 71, 23, 103, 131, 41, 271, 31, 7, 569, 17, 587, 149, 17, 307, 89, 79
Offset: 2

Views

Author

Gionata Neri, May 31 2015

Keywords

Comments

a(A024907(n)) = A061238(n).

Crossrefs

Cf. A006530, A051682, A069902 (similar, with triangular numbers).

Programs

  • Maple
    gpf:= n -> max(numtheory:-factorset(n));
    seq(gpf(n*(9*n-7)/2),n=2..100); # Robert Israel, Jun 24 2015
  • PARI
    a(n) = my(f = factor(n*(9*n-7)/2)); f[#f~,1]; \\ Michel Marcus, May 31 2015

Formula

a(n) = A006530(A051682(n)).

A183223 Complement of the 11-gonal numbers.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2011

Keywords

Crossrefs

Cf. A051682 (11-gonal numbers).

Programs

  • Mathematica
     Table[n+Floor[1/2+(2n/9+2/9)^(1/2)], {n,100}]
  • Python
    from math import isqrt
    def A183223(n): return n+(isqrt((n<<3|4)//9)+1>>1) # Chai Wah Wu, Oct 06 2024

Formula

a(n) = n + floor(1/2+(2n/9+2/9)^(1/2)).

A236333 The (n-2)-th (n>=3) triple of terms gives coefficients of double trinomial P_n(x) = ((n-2)^2*x^2 + n*x + 2)/2 (see comment).

Original entry on oeis.org

1, 3, 2, 4, 4, 2, 9, 5, 2, 16, 6, 2, 25, 7, 2, 36, 8, 2, 49, 9, 2, 64, 10, 2, 81, 11, 2, 100, 12, 2, 121, 13, 2, 144, 14, 2, 169, 15, 2, 196, 16, 2, 225, 17, 2, 256, 18, 2, 289, 19, 2, 324, 20, 2, 361, 21, 2, 400, 22, 2, 441, 23, 2, 484, 24, 2, 529, 25, 2, 576, 26, 2, 625, 27, 2, 676, 28, 2, 729, 29, 2
Offset: 3

Views

Author

Vladimir Shevelev, Jan 22 2014

Keywords

Comments

Let {G_n(k)}_(k>=0) be sequence of n-gonal numbers. Then G_n(P_n(k)) = G_n(P_n(k)-1) + G_n((n-2)*k+1).

Examples

			Let n=5, k=4. Then G_5(k)=k*(3*k-1)/2 (Cf. A000326) and the double trinomial 2*P_5(x)= 9*x^2+5*x+2, P_5(4)=(9*4^2+5*4+2)/2=83,
Thus, we have G_5(83)=G_5(82)+G_5(13), or 83*124 = 41*245 + 13*19 = 10292.
		

Crossrefs

Programs

  • Magma
    I:=[1,3,2,4,4,2,9,5,2]; [n le 9 select I[n] else 3*Self(n-3)-3*Self(n-6)+Self(n-9): n in [1..90]]; // Vincenzo Librandi, Feb 02 2014
  • Mathematica
    a[n_]:=Which[Mod[n,3]==0,n^2/9,Mod[n,3]==1,(n+5)/3,True,2]; Map[a,Range[3,103]]
    CoefficientList[Series[(-1-3 x-2 x^2-x^3+5 x^4+4 x^5-2 x^7-2 x^8)/((-1+x)^3 (1+x+x^2)^3),{x,0,100}],x]
  • PARI
    Vec(-x^3*(2*x^8+2*x^7-4*x^5-5*x^4+x^3+2*x^2+3*x+1)/((x-1)^3*(x^2+x+1)^3) + O(x^100)) \\ Colin Barker, Jan 23 2014
    

Formula

If n==0 (mod 3), then a(n) = n^2/9;
if n==1 (mod 3), then a(n) = (n+5)/3;
if n==2 (mod 3), then a(n) = 2.
G.f.: -x^3*(2*x^8+2*x^7-4*x^5-5*x^4+x^3+2*x^2+3*x+1) / ((x-1)^3*(x^2+x+1)^3). - Colin Barker, Jan 23 2014

A266087 Alternating sum of 11-gonal (or hendecagonal) numbers.

Original entry on oeis.org

0, -1, 10, -20, 38, -57, 84, -112, 148, -185, 230, -276, 330, -385, 448, -512, 584, -657, 738, -820, 910, -1001, 1100, -1200, 1308, -1417, 1534, -1652, 1778, -1905, 2040, -2176, 2320, -2465, 2618, -2772, 2934, -3097, 3268, -3440, 3620, -3801, 3990, -4180
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2015

Keywords

Crossrefs

Programs

  • Magma
    [(18*(-1)^n*n^2 + 4*(-1)^n*n - 7*(-1)^n + 7)/8: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015
    
  • Mathematica
    Table[((18 n^2 + 4 n - 7) (-1)^n + 7)/8, {n, 0, 43}]
    CoefficientList[Series[(x - 8 x^2)/(x^4 + 2 x^3 - 2 x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
    Accumulate[Times@@@Partition[Riffle[PolygonalNumber[11,Range[0,50]],{1,-1},{2,-1,2}],2]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{-2,0,2,1},{0,-1,10,-20},50] (* Harvey P. Dale, Aug 27 2019 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(-x*(1-8*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015

Formula

G.f.: -x*(1 - 8*x)/((1 - x)*(1 + x)^3).
a(n) = ((18*n^2 + 4*n - 7)*(-1)^n + 7)/8.
a(n) = Sum_{k = 0..n} (-1)^k*A051682(k).
Lim_{n -> infinity} a(n + 1)/a(n) = -1.
E.g.f.: (1/4)*(9*x^2 - 11*x)*cosh(x) - (1/4)*(9*x^2 - 11*x - 7)*sinh(x). - G. C. Greubel, Jan 27 2016
Previous Showing 51-60 of 69 results. Next