cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 124 results. Next

A051904 Minimal exponent in prime factorization of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Dec 16 1999

Keywords

Comments

The asymptotic mean of this sequence is 1 (Niven, 1969). - Amiram Eldar, Jul 10 2020
Let k = A007947(n), then for n > 1 k^a(n) is the greatest power of k which divides n; see example. - David James Sycamore, Sep 07 2023

Examples

			For n = 72 = 2^3*3^2, a(72) = min(exponents) = min(3,2) = 2.
For n = 72, using alternative definition: rad(72) = 6; and 6^2 = 36 divides 72 but no higher power of 6 divides 72, so a(72) = 2.
For n = 432, rad(432) = 6 and 6^3 = 216 divides 432 but no higher power of 6 divides 432, therefore a(432) = 3. - _David James Sycamore_, Sep 08 2023
		

Crossrefs

Programs

  • Haskell
    a051904 1 = 0
    a051904 n = minimum $ a124010_row n  -- Reinhard Zumkeller, Jul 15 2012
    
  • Maple
    a := proc (n) if n = 1 then 0 else min(seq(op(2, op(j, op(2, ifactors(n)))), j = 1 .. nops(op(2, ifactors(n))))) end if end proc: seq(a(n), n = 1 .. 100); # Emeric Deutsch, May 20 2015
  • Mathematica
    Table[If[n == 1, 0, Min @@ Last /@ FactorInteger[n]], {n, 100}] (* Ray Chandler, Jan 24 2006 *)
  • PARI
    a(n)=vecmin(factor(n)[,2]) \\ Charles R Greathouse IV, Nov 19 2012
    
  • Python
    from sympy import factorint
    def a(n):
        f = factorint(n)
        l = [f[p] for p in f]
        return 0 if n == 1 else min(l)
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 13 2017
  • Scheme
    (define (A051904 n) (cond ((= 1 n) 0) ((= 1 (A001221 n)) (A001222 n)) (else (min (A067029 n) (A051904 (A028234 n)))))) ;; Antti Karttunen, Jul 12 2017
    

Formula

a(n) = min_{k=1..A001221(n)} A124010(n,k). - Reinhard Zumkeller, Aug 27 2011
a(1) = 0, for n > 1, if A001221(n) = 1 (when n is in A000961), a(n) = A001222(n), otherwise a(n) = min(A067029(n), a(A028234(n))). - Antti Karttunen, Jul 12 2017
Sum_{k=1..n} a(k) ~ n + zeta(3/2)*n^(1/2)/zeta(3) + (zeta(2/3)/zeta(2) + c0)*n^(1/3), where c0 = A362974 = Product_{p prime} (1 + 1/p^(4/3) + 1/p^(5/3)) [Cao Hui-Zhong, 1991]. - Vaclav Kotesovec, Mar 24 2025

A047968 a(n) = Sum_{d|n} p(d), where p(d) = A000041 = number of partitions of d.

Original entry on oeis.org

1, 3, 4, 8, 8, 17, 16, 30, 34, 52, 57, 99, 102, 153, 187, 261, 298, 432, 491, 684, 811, 1061, 1256, 1696, 1966, 2540, 3044, 3876, 4566, 5846, 6843, 8610, 10203, 12610, 14906, 18491, 21638, 26508, 31290, 38044, 44584, 54133, 63262, 76241
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Inverse Moebius transform of A000041.
Row sums of triangle A137587. - Gary W. Adamson, Jan 27 2008
Row sums of triangle A168021. - Omar E. Pol, Nov 20 2009
Row sums of triangle A168017. Row sums of triangle A168018. - Omar E. Pol, Nov 25 2009
Sum of the partition numbers of the divisors of n. - Omar E. Pol, Feb 25 2014
Conjecture: for n > 6, a(n) is strictly increasing. - Franklin T. Adams-Watters, Apr 19 2014
Number of constant multiset partitions of multisets spanning an initial interval of positive integers with multiplicities an integer partition of n. - Gus Wiseman, Sep 16 2018

Examples

			For n = 10 the divisors of 10 are 1, 2, 5, 10, hence the partition numbers of the divisors of 10 are 1, 2, 7, 42, so a(10) = 1 + 2 + 7 + 42 = 52. - _Omar E. Pol_, Feb 26 2014
From _Gus Wiseman_, Sep 16 2018: (Start)
The a(6) = 17 constant multiset partitions:
  (111111)  (111)(111)    (11)(11)(11)  (1)(1)(1)(1)(1)(1)
  (111222)  (12)(12)(12)
  (111122)  (112)(112)
  (112233)  (123)(123)
  (111112)
  (111123)
  (111223)
  (111234)
  (112234)
  (112345)
  (123456)
(End)
		

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l) do c := c+numbpart(l[i]) od: RETURN(c): end: for j from 1 to 60 do printf(`%d, `, a(j)) od: # Zerinvary Lajos, Apr 14 2007
  • Mathematica
    a[n_] := Sum[ PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 44}] (* Jean-François Alcover, Oct 03 2013 *)

Formula

G.f.: Sum_{k>0} (-1+1/Product_{i>0} (1-z^(k*i))). - Vladeta Jovovic, Jun 22 2003
G.f.: sum(n>0,A000041(n)*x^n/(1-x^n)). - Mircea Merca, Feb 24 2014.
a(n) = A168111(n) + A000041(n). - Omar E. Pol, Feb 26 2014
a(n) = Sum_{y is a partition of n} A000005(GCD(y)). - Gus Wiseman, Sep 16 2018

A303386 Number of aperiodic factorizations of n > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 7, 1, 2, 2, 4, 1, 5, 1, 6, 2, 2, 2, 7, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 1, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 3, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 7, 1, 5, 1, 7, 5
Offset: 2

Views

Author

Gus Wiseman, Apr 23 2018

Keywords

Comments

An aperiodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities are relatively prime.

Examples

			The a(36) = 7 aperiodic factorizations are (2*2*9), (2*3*6), (2*18), (3*3*4), (3*12), (4*9), and (36). Missing from this list are (2*2*3*3) and (6*6).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],GCD@@Length/@Split[#]===1&]],{n,2,100}]
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A303386(n) = if(1==n,n,my(r); sumdiv(A052409(n),d, ispower(n,d,&r); moebius(d)*A001055(r))); \\ Antti Karttunen, Sep 25 2018

Formula

a(n) = Sum_{d|A052409(n)} mu(d) * A001055(n^(1/d)), where mu = A008683.

Extensions

More terms from Antti Karttunen, Sep 25 2018

A089723 a(1)=1; for n>1, a(n) gives number of ways to write n as n = x^y, 2 <= x, 1 <= y.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Naohiro Nomoto, Jan 07 2004

Keywords

Comments

This function depends only on the prime signature of n. - Franklin T. Adams-Watters, Mar 10 2006
a(n) is the number of perfect divisors of n. Perfect divisor of n is divisor d such that d^k = n for some k >= 1. a(n) > 1 for perfect powers n = A001597(m) for m > 2. - Jaroslav Krizek, Jan 23 2010
Also the number of uniform perfect integer partitions of n - 1. An integer partition of n is uniform if all parts appear with the same multiplicity, and perfect if every nonnegative integer up to n is the sum of a unique submultiset. The Heinz numbers of these partitions are given by A326037. The a(16) = 3 partitions are: (8,4,2,1), (4,4,4,1,1,1), (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1). - Gus Wiseman, Jun 07 2019
The record values occur at 1 and at 2^A002182(n) for n > 1. - Amiram Eldar, Nov 06 2020

Examples

			144 = 2^4 * 3^2, gcd(4,2) = 2, d(2) = 2, so a(144) = 2. The representations are 144^1 and 12^2.
From _Friedjof Tellkamp_, Jun 14 2025: (Start)
n:          1, 2, 3, 4, 5, 6, 7, 8, 9, ...
----------------------------------------------------
1st powers: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... (A000012)
Squares:    1, 0, 0, 1, 0, 0, 0, 0, 1, ... (A010052)
Cubes:      1, 0, 0, 0, 0, 0, 0, 1, 0, ... (A010057)
Quartics:   1, 0, 0, 0, 0, 0, 0, 0, 0, ... (A374016)
...
Sum:       oo, 1, 1, 2, 1, 1, 1, 2, 2, ...
a(1)=1:     1, 1, 1, 2, 1, 1, 1, 2, 2, ... (= this sequence). (End)
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A089723 := proc(n) local t1,t2,g,j;
    if n=1 then 1 else
    t1:=ifactors(n)[2]; t2:=nops(t1); g := t1[1][2];
    for j from 2 to t2 do g:=gcd(g,t1[j][2]); od:
    tau(g); fi; end;
    [seq(A089723(n),n=1..100)]; # N. J. A. Sloane, Nov 10 2016
  • Mathematica
    Table[DivisorSigma[0, GCD @@ FactorInteger[n][[All, 2]]], {n, 100}] (* Gus Wiseman, Jun 12 2017 *)
  • PARI
    a(n) = if (n==1, 1, numdiv(gcd(factor(n)[,2]))); \\ Michel Marcus, Jun 13 2017
    
  • Python
    from math import gcd
    from sympy import factorint, divisor_sigma
    def a(n):
        if n == 1: return 1
        e = list(factorint(n).values())
        g = e[0]
        for ei in e[1:]: g = gcd(g, ei)
        return divisor_sigma(g, 0)
    print([a(n) for n in range(1, 105)]) # Michael S. Branicky, Jul 15 2021

Formula

If n = Product p_i^e_i, a(n) = d(gcd()). - Franklin T. Adams-Watters, Mar 10 2006
Sum_{n=1..m} a(n) = A255165(m) + 1. - Richard R. Forberg, Feb 16 2015
Sum_{n>=2} a(n)/n^s = Sum_{n>=2} 1/(n^s-1) = Sum_{k>=1} (zeta(s*k)-1) for all real s with Re(s) > 1 (Golomb, 1973). - Amiram Eldar, Nov 06 2020
For n > 1, a(n) = Sum_{i=1..floor(n/2)} floor(n^(1/i))-floor((n-1)^(1/i)). - Wesley Ivan Hurt, Dec 08 2020
Sum_{n>=1} (a(n)-1)/n = 1 (Mycielski, 1951). - Amiram Eldar, Jul 15 2021
From Friedjof Tellkamp, Jun 14 2025: (Start)
a(n) = 1 + A259362(n) = 1 + A010052(n) + A010057(n) + A374016(n) + (...), for n > 1.
G.f.: x + Sum_{j>=2, k>=1} x^(j^k). (End)

A034729 a(n) = Sum_{ k, k|n } 2^(k-1).

Original entry on oeis.org

1, 3, 5, 11, 17, 39, 65, 139, 261, 531, 1025, 2095, 4097, 8259, 16405, 32907, 65537, 131367, 262145, 524827, 1048645, 2098179, 4194305, 8390831, 16777233, 33558531, 67109125, 134225995, 268435457, 536887863, 1073741825, 2147516555, 4294968325, 8590000131
Offset: 1

Views

Author

Keywords

Comments

Dirichlet convolution of b_n=1 with c_n = 2^(n-1).
Equals row sums of triangle A143425, & inverse Möbius transform (A051731) of [1, 2, 4, 8, ...]. - Gary W. Adamson, Aug 14 2008
Number of constant multiset partitions of normal multisets of size n, where a multiset is normal if it spans an initial interval of positive integers. - Gus Wiseman, Sep 16 2018

Examples

			From _Gus Wiseman_, Sep 16 2018: (Start)
The a(4) = 11 constant multiset partitions:
  (1)(1)(1)(1)
    (11)(11)
    (12)(12)
     (1111)
     (1222)
     (1122)
     (1112)
     (1233)
     (1223)
     (1123)
     (1234)
(End)
		

Crossrefs

Cf. A289508.
Sums of the form Sum_{d|n} q^(d-1): this sequence (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).

Programs

  • Magma
    A034729:= func< n | (&+[2^(d-1): d in Divisors(n)]) >;
    [A034729(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
    
  • Maple
    seq(add(2^(k-1),k=numtheory:-divisors(n)), n = 1 .. 100); # Robert Israel, Aug 22 2014
  • Mathematica
    Rest[CoefficientList[Series[Sum[x^k/(1-2*x^k),{k,1,30}],{x,0,30}],x]] (* Vaclav Kotesovec, Sep 08 2014 *)
  • PARI
    A034729(n) = sumdiv(n,k,2^(k-1)) \\ Michael B. Porter, Mar 11 2010
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,2^(m-1)*x^m/(1-x^m +x*O(x^n))),n)}
    for(n=1,40,print1(a(n),", ")) \\ Paul D. Hanna, Aug 21 2014
    
  • PARI
    {a(n)=local(A=x+x^2);A=sum(m=1,n,x^m*sumdiv(m,d,1/(1 - x^(m/d) +x*O(x^n))^d) );polcoeff(A,n)}
    for(n=1,40,print1(a(n),", ")) \\ Paul D. Hanna, Aug 21 2014
    
  • Python
    from sympy import divisors
    def A034729(n): return sum(1<<(d-1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jul 15 2022
    
  • SageMath
    def A034729(n): return sum(2^(k-1) for k in (1..n) if (k).divides(n))
    [A034729(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024

Formula

G.f.: Sum_{n>0} x^n/(1-2*x^n). - Vladeta Jovovic, Nov 14 2002
a(n) = 1/2 * A055895(n). - Joerg Arndt, Aug 14 2012
G.f.: Sum_{n>=1} 2^(n-1) * x^n / (1 - x^n). - Paul D. Hanna, Aug 21 2014
G.f.: Sum_{n>=1} x^n * Sum_{d|n} 1/(1 - x^d)^(n/d). - Paul D. Hanna, Aug 21 2014
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Sep 09 2014
a(n) = Sum_{k in row n of A215366} A008480(k) * A000005(A289508(k)). - Gus Wiseman, Sep 16 2018
a(n) = Sum_{c is a composition of n} A000005(gcd(c)). - Gus Wiseman, Sep 16 2018

A303431 Aperiodic tree numbers. Matula-Goebel numbers of aperiodic rooted trees.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 12, 13, 15, 18, 20, 22, 24, 26, 29, 30, 31, 33, 37, 39, 40, 41, 44, 45, 47, 48, 50, 52, 54, 55, 58, 60, 61, 62, 65, 66, 71, 72, 74, 75, 78, 79, 80, 82, 87, 88, 89, 90, 93, 94, 96, 99, 101, 104, 108, 109, 110, 111, 113, 116, 117, 120, 122
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2018

Keywords

Comments

A positive integer is an aperiodic tree number iff either it is equal to 1 or it belongs to A007916 (numbers that are not perfect powers, or numbers whose prime multiplicities are relatively prime) and all of its prime indices are also aperiodic tree numbers, where a prime index of n is a number m such that prime(m) divides n.

Examples

			Sequence of aperiodic rooted trees begins:
01 o
02 (o)
03 ((o))
05 (((o)))
06 (o(o))
10 (o((o)))
11 ((((o))))
12 (oo(o))
13 ((o(o)))
15 ((o)((o)))
18 (o(o)(o))
20 (oo((o)))
22 (o(((o))))
24 (ooo(o))
26 (o(o(o)))
29 ((o((o))))
30 (o(o)((o)))
31 (((((o)))))
33 ((o)(((o))))
		

Crossrefs

Programs

  • Mathematica
    zapQ[1]:=True;zapQ[n_]:=And[GCD@@FactorInteger[n][[All,2]]===1,And@@zapQ/@PrimePi/@FactorInteger[n][[All,1]]];
    Select[Range[100],zapQ]

A072411 LCM of exponents in prime factorization of n, a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 3
Offset: 1

Views

Author

Labos Elemer, Jun 17 2002

Keywords

Comments

The sums of the first 10^k terms, for k = 1, 2, ..., are 14, 168, 1779, 17959, 180665, 1808044, 18084622, 180856637, 1808585068, 18085891506, ... . Apparently, the asymptotic mean of this sequence is limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1.8085... . - Amiram Eldar, Sep 10 2022

Examples

			n = 288 = 2*2*2*2*2*3*3; lcm(5,2) = 10; Product(5,2) = 10, max(5,2) = 5;
n = 180 = 2*2*3*3*5; lcm(2,2,1) = 2; Product(2,2,1) = 4; max(2,2,1) = 2; it deviates both from maximum of exponents (A051903, for the first time at n=72), and product of exponents (A005361, for the first time at n=36).
For n = 36 = 2*2*3*3 = 2^2 * 3^2 we have a(36) = lcm(2,2) = 2.
For n = 72 = 2*2*2*3*3 = 2^3 * 3^2 we have a(72) = lcm(2,3) = 6.
For n = 144 = 2^4 * 3^2 we have a(144) = lcm(2,4) = 4.
For n = 360 = 2^3 * 3^2 * 5^1 we have a(360) = lcm(1,2,3) = 6.
		

Crossrefs

Similar sequences: A001222 (sum of exponents), A005361 (product), A051903 (maximal exponent), A051904 (minimal exponent), A052409 (gcd of exponents), A267115 (bitwise-and), A267116 (bitwise-or), A268387 (bitwise-xor).
Cf. also A055092, A060131.
Differs from A290107 for the first time at n=144.
After the initial term, differs from A157754 for the first time at n=360.

Programs

  • Mathematica
    Table[LCM @@ Last /@ FactorInteger[n], {n, 2, 100}] (* Ray Chandler, Jan 24 2006 *)
  • PARI
    a(n) = lcm(factor(n)[,2]); \\ Michel Marcus, Mar 25 2017
  • Python
    from sympy import lcm, factorint
    def a(n):
        l=[]
        f=factorint(n)
        for i in f: l+=[f[i],]
        return lcm(l)
    print([a(n) for n in range(1, 151)]) # Indranil Ghosh, Mar 25 2017
    

Formula

a(1) = 1; for n > 1, a(n) = lcm(A067029(n), a(A028234(n))). - Antti Karttunen, Aug 09 2016
From Antti Karttunen, Aug 22 2017: (Start)
a(n) = A284569(A156552(n)).
a(n) = A290103(A181819(n)).
a(A289625(n)) = A002322(n).
a(A290095(n)) = A055092(n).
a(A275725(n)) = A060131(n).
a(A260443(n)) = A277326(n).
a(A283477(n)) = A284002(n). (End)

Extensions

a(1) = 1 prepended and the data section filled up to 120 terms by Antti Karttunen, Aug 09 2016

A295935 Number of twice-factorizations of n where the latter factorizations are constant, i.e., type (P,P,R).

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 5, 3, 2, 1, 5, 1, 2, 2, 12, 1, 5, 1, 5, 2, 2, 1, 10, 3, 2, 5, 5, 1, 5, 1, 18, 2, 2, 2, 15, 1, 2, 2, 10, 1, 5, 1, 5, 5, 2, 1, 22, 3, 5, 2, 5, 1, 10, 2, 10, 2, 2, 1, 13, 1, 2, 5, 40, 2, 5, 1, 5, 2, 5, 1, 28, 1, 2, 5, 5, 2, 5, 1, 22, 12, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor of each factor in a factorization of n.

Examples

			The a(24) = 10 twice-factorizations are:
(2)*(2)*(2)*(3), (2)*(3)*(2*2), (3)*(2*2*2)
(2)*(2)*(6), (2*2)*(6),
(2)*(3)*(4),
(2)*(12),
(3)*(8),
(4)*(6),
(24).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Product[Length[Divisors[GCD@@FactorInteger[d][[All,2]]]],{d,f}],{f,facs[n]}],{n,100}]

Formula

Dirichlet g.f.: 1/Product_{n > 1}(1 - A089723(n)/n^s).

A303707 Number of factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

First differs from A081707 at a(60) = 9, A081707(60) = 8.

Examples

			The a(60) = 9 factorizations are (2*2*3*5), (2*2*15), (2*3*10), (2*5*6), (2*30), (3*20), (5*12), (6*10), (60).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[facsr[n]],{n,100}]

Formula

Dirichlet g.f.: Product_{n in A007916} 1/(1 - n^s).

A294068 Number of factorizations of n using perfect powers (elements of A001597) other than 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, May 05 2018

Keywords

Examples

			The a(1152) = 7 factorizations are (4*4*8*9), (4*8*36), (4*9*32), (8*9*16), (8*144), (9*128), (32*36).
		

Crossrefs

Programs

  • Maple
    ispp:= proc(n) local F;
      F:= ifactors(n)[2];
      igcd(op(map(t -> t[2],F)))>1
    end proc:
    f:= proc(n) local F, np, Q;
      F:= map(t -> t[2], ifactors(n)[2]);
      np:= mul(ithprime(i)^F[i],i=1..nops(F));
      Q:= select(ispp, numtheory:-divisors(np));
      G(Q,np)
    end proc:
    G:= proc(Q,n) option remember; local q,t,k;
        if not numtheory:-factorset(n) subset `union`(seq(numtheory:-factorset(q),q=Q)) then return 0 fi;
        q:= Q[1]; t:= 0;
        for k from 0 while n mod q^k = 0 do
          t:= t + procname(Q[2..-1],n/q^k)
        od;
        t
    end proc:
    G({},1):= 1:
    map(f, [$1..200]); # Robert Israel, May 06 2018
  • Mathematica
    ppQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]>1];
    facsp[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsp[n/d],Min@@#>=d&]],{d,Select[Divisors[n],ppQ]}]];
    Table[Length[facsp[n]],{n,100}]
Previous Showing 11-20 of 124 results. Next