A348925
Number of 4-sided prudent polygons of area n.
Original entry on oeis.org
8, 16, 40, 96, 232, 560, 1336, 3176, 7480, 17528, 40776, 94336, 216976, 496432, 1130120, 2560648, 5776304, 12976112, 29036008, 64732992, 143814192, 318455632, 702983256, 1547254832, 3395989288, 7433962168, 16232357608, 35359307144, 76848753032, 166658534216
Offset: 1
- Nicholas R. Beaton and Anthony Guttmann, Table of n, a(n) for n = 1..800
- Nicholas R. Beaton, Philippe Flajolet, Tim Garoni and Anthony J. Guttmann, Some New Self-avoiding Walk and Polygon Models, Fundamenta Informaticae, vol. 117, 2012, pp. 19-33.
- Nicholas R. Beaton, Philippe Flajolet and Anthony J. Guttmann, The Enumeration of Prudent Polygons by Area and its Unusual Asymptotics, arXiv:1011.6195 [math.CO], Nov 29 2010, updated Nov 04 2021.
A369492
Triangle read by rows. An encoding of compositions of n where the first part is the largest part and the last part is not 1. The number of these compositions (the length of row n) is given by A368279.
Original entry on oeis.org
1, 0, 2, 4, 8, 10, 16, 18, 22, 32, 34, 36, 38, 42, 46, 64, 66, 68, 70, 74, 76, 78, 86, 90, 94, 128, 130, 132, 134, 136, 138, 140, 142, 146, 148, 150, 154, 156, 158, 170, 174, 182, 186, 190, 256, 258, 260, 262, 264, 266, 268, 270, 274, 276, 278, 280, 282, 284, 286
Offset: 0
Encoding the composition as an integer, a binary string, a Dyck path, and a list.
[ n]
[ 0] 1 | 1 | () | [()]
[ 1] 0 | 0 | . | []
[ 2] 2 | 10 | (()) | [2]
[ 3] 4 | 100 | ((())) | [3]
[ 4] 8 | 1000 | (((()))) | [4]
[ 5] 10 | 1010 | (())(()) | [2, 2]
[ 6] 16 | 10000 | ((((())))) | [5]
[ 7] 18 | 10010 | ((()))(()) | [3, 2]
[ 8] 22 | 10110 | (())()(()) | [2, 1, 2]
[ 9] 32 | 100000 | (((((()))))) | [6]
[10] 34 | 100010 | (((())))(()) | [4, 2]
[11] 36 | 100100 | ((()))((())) | [3, 3]
[12] 38 | 100110 | ((()))()(()) | [3, 1, 2]
[13] 42 | 101010 | (())(())(()) | [2, 2, 2]
[14] 46 | 101110 | (())()()(()) | [2, 1, 1, 2]
Sequence seen as table:
[0] 1;
[1] 0;
[2] 2;
[3] 4;
[4] 8, 10;
[5] 16, 18, 22;
[6] 32, 34, 36, 38, 42, 46;
[7] 64, 66, 68, 70, 74, 76, 78, 86, 90, 94;
...
-
# See the notebook in the links section, that includes a time and space efficient algorithm to generate the compositions. Alternatively, using SageMath's generator:
def pr(bw, w, dw, c):
print(f"{bw:3d} | {str(w).ljust(7)} | {str(dw).ljust(14)} | {c}")
def Trow(n):
row, count = [], 0
for c in reversed(Compositions(n)):
if c == []:
count = 1
pr(1, 1, "()", "[()]")
elif c == [1]:
pr(0, 0, ".", "[]")
elif c[-1] != 1:
if all(part <= c[0] for part in c):
w = Words([0, 1])(c.to_code())
dw = DyckWord(sum([[1]*a + [0]*a for a in c], []))
bw = int(str(w), 2)
row.append(bw)
count += 1
pr(bw, w, dw, c)
# print(f"For n = {n} there are {count} composition of type A369492.")
return row
for n in range(0, 7): Trow(n)
A060802
To weigh from 1 to n, make the heaviest weight as small as possible, under the condition of using fewest pieces of different, single weights; a(n) = weight of the heaviest weight.
Original entry on oeis.org
1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 7, 8, 6, 6, 6, 7, 7, 8, 8, 9, 9, 10, 11, 12, 13, 14, 15, 16, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 18, 18, 18, 19, 19, 20, 20, 21
Offset: 1
a(20)=7 because every number from 1 to 20 can be obtained from {1,2,4,6,7}.
A096068
Concatenated in binary representation: largest proper divisor of n and smallest prime factor of n.
Original entry on oeis.org
3, 6, 7, 10, 13, 14, 15, 18, 15, 22, 27, 26, 29, 30, 23, 34, 49, 38, 51, 42, 31, 46, 55, 50, 45, 54, 39, 58, 61, 62, 63, 66, 47, 70, 61, 74, 101, 78, 55, 82, 105, 86, 107, 90, 63, 94, 111, 98, 63, 102, 71, 106, 117, 110, 93, 114, 79, 118, 123, 122, 125, 126, 87, 130, 109
Offset: 1
n=99: smallest factor = 3->'11' and greatest proper divisor =
99/3 = 33->'100001': '10001'&'11'='10000111'->a(99)=135.
-
cbr[n_]:=Module[{sf=FactorInteger[n][[1,1]]},FromDigits[ Join[ IntegerDigits[ n/sf,2],IntegerDigits[sf,2]],2]]; Array[cbr,70] (* Harvey P. Dale, Jul 06 2021 *)
A134351
Binomial transform of [1, 5, -1, 5, -1, 5, ...]. Inverse binomial transform of A134350.
Original entry on oeis.org
1, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 1
a(4) = 18 = (1, 3, 3, 1) dot (1, 5, -1, 5) = (1 + 15 - 3 + 5).
A139524
Triangle T(n,k) read by rows: the coefficient of [x^k] of the polynomial 2*(x+1)^n + 2^n in row n, column k.
Original entry on oeis.org
3, 4, 2, 6, 4, 2, 10, 6, 6, 2, 18, 8, 12, 8, 2, 34, 10, 20, 20, 10, 2, 66, 12, 30, 40, 30, 12, 2, 130, 14, 42, 70, 70, 42, 14, 2, 258, 16, 56, 112, 140, 112, 56, 16, 2, 514, 18, 72, 168, 252, 252, 168, 72, 18, 2, 1026, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2
Offset: 0
Triangle begins as:
3;
4, 2;
6, 4, 2;
10, 6, 6, 2;
18, 8, 12, 8, 2;
34, 10, 20, 20, 10, 2;
66, 12, 30, 40, 30, 12, 2;
130, 14, 42, 70, 70, 42, 14, 2;
258, 16, 56, 112, 140, 112, 56, 16, 2;
514, 18, 72, 168, 252, 252, 168, 72, 18, 2;
1026, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2;
- Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Pages 88-89
-
A139524:= func< n,k | k eq 0 select 2+2^n else 2*Binomial(n,k) >;
[A139524(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 02 2021
-
(* First program *)
T[n_, k_]:= SeriesCoefficient[Series[2*(1+x)^n + 2^n, {x, 0, 20}], k];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 02 2021 *)
(* Second program *)
T[n_, k_]:= T[n, k] = If[k==0, 2 + 2^n, 2*Binomial[n, k]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 02 2021 *)
-
def A139524(n,k): return 2+2^n if (k==0) else 2*binomial(n,k)
flatten([[A139524(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021
A174316
Sequence defined by a(0)=a(1)=a(2)=1, a(3)=2, a(4)=6 and the formula a(n)=2^(n-2)+2 for n>=5.
Original entry on oeis.org
1, 1, 1, 2, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 0
a(5)=2^3+2=10. a(6)=2^4+2=18.
-
taylor(((1+z^3+4*z^4-4*z^5)/(1-z))+((8*z^5)/(1-2*z)),z=0,50); v(0):=1:v(1):=1:v(2):=1:v(3):=2:v(4):=6: for n from 5 to 50 do v(n):=2^(n-2)+2:od:seq(v(n),n=0..50);
-
CoefficientList[Series[(1 + z + z^2 + 2*z^3 + 6*z^4 + ((2*z^5)/(1 - z)) + ((2*z)^5/(4*(1 - 2*z)))), {z, 0, 50}], z] (* Wesley Ivan Hurt, Sep 05 2025 *)
A179282
Numbers n such that 2^n-2 and 2^n+2 are not squarefree.
Original entry on oeis.org
1, 22, 31, 64, 79, 91, 106, 111, 148, 151, 190, 205, 211, 232, 235, 271, 274, 311, 316, 331, 341, 358, 391, 400, 442, 451, 466, 484, 511, 526, 547, 551, 568, 571, 610, 613, 631, 652, 658, 667, 691, 694, 703, 736, 751, 760, 771, 778, 811, 820, 859, 862, 871, 904
Offset: 1
2^22-2=2*7^2*127*337, 2^22+2=2*3^2*43*5419.
-
Select[Range@211,!(SquareFreeQ[2^#-2]||SquareFreeQ[2^#+2])&]
-
isok(n) = !issquarefree(2^n-2) && !issquarefree(2^n+2); \\ Michel Marcus, Oct 04 2019
A254148
a(n) = 9*2^n + 7*4^n + 3*8^n + 8*3^n + 2*9^n + 6*5^n + 5*6^n + 4*7^n + 10^n + 10.
Original entry on oeis.org
55, 220, 1210, 7942, 57838, 450670, 3682030, 31153342, 270739678, 2403012910, 21693441550, 198578979742, 1838853136318, 17193665419150, 162090976108270, 1538867288166142, 14698448516729758, 141129617123665390, 1361277292619082190
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..999
- Luciano Ancora, Demonstration of formulas
- Index entries for linear recurrences with constant coefficients, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800).
-
vector(30, n, n--; 9*2^n + 7*4^n + 3*8^n + 8*3^n + 2*9^n + 6*5^n + 5*6^n + 4*7^n + 10^n + 10) \\ Colin Barker, Jan 28 2015
A334164
a(n) is the number of ON-cells in the completed n-th level of a triangular wedge in the hexagonal grid of A151723 (i.e., after 2^k >= n generations of the automaton in A151723 have been computed).
Original entry on oeis.org
1, 2, 2, 4, 2, 6, 4, 8, 2, 10, 6, 10, 4, 14, 8, 16, 2, 18, 10, 16, 8, 20, 12, 22, 6, 26, 14, 22, 8, 30, 16, 32, 2, 34, 18, 28, 16, 34, 18, 32, 14, 40, 22, 34, 16, 42, 24, 44, 10, 50, 26, 40, 20, 48, 28, 50, 14, 58, 30, 46, 16, 62, 32, 64
Offset: 1
Cf.
A000051,
A036563,
A052548,
A083686,
A151723,
A164094,
A181565,
A195744,
A196657,
A206371,
A334169.
-
(* a169781[] and support functions are defined in A169781 and create the list nTriangle *)
a334164[n_] := Module[{k, levels={}}, a169781[n]; For[k=1, k<=n, k++, AppendTo[levels, Count[nTriangle[[k]], 1] - 2]]; levels]/;(n>=3 && IntegerQ[Log[2,n]])
a334164[64] (* sequence data *)
Comments