cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A076496 Numbers k such that sigma(k) == 12 (mod k).

Original entry on oeis.org

1, 6, 11, 24, 30, 42, 54, 66, 78, 102, 114, 121, 138, 174, 186, 222, 246, 258, 282, 304, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 762, 780, 786, 822, 834, 894, 906, 942, 978, 1002, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1338
Offset: 1

Views

Author

Labos Elemer, Oct 21 2002

Keywords

Examples

			6*p is a solution if p > 3 is prime, since sigma(6*p) = 1 + 2 + 3 + 6 + p + 2*p + 3*p + 6*p = 12*(p+1) = 2*6*p + 12 = 2*k + 12. These are "regular" solutions. Also k = 121, 304 are "singular" solutions. See other remainders in cross-references.
		

Crossrefs

Cf. A141545 (a subsequence).

Programs

  • Mathematica
    Select[Range[2000], Mod[DivisorSigma[1, #] - 12, #] == 0 &] (* Vincenzo Librandi, Mar 11 2014, corrected by Amiram Eldar, Jan 04 2023 *)
  • PARI
    isok(k) = Mod(sigma(k), k) == 12; \\ Michel Marcus, Jan 04 2023

Extensions

Initial term 1 added by Vincenzo Librandi, Mar 11 2014
Terms 6 and 11 inserted by Michel Marcus, Jan 04 2023

A045769 Numbers k such that sigma(k) == 4 (mod k).

Original entry on oeis.org

1, 3, 9, 12, 70, 88, 1888, 4030, 5830, 32128, 521728, 1848964, 8378368, 34359083008, 66072609790, 549753192448, 259708613909470, 2251799645913088, 9223372026117357568
Offset: 1

Views

Author

Keywords

Comments

Every number of the form 2^(j-1)*(2^j - 5), where 2^j - 5 is prime, is a term. See A059608. - Jon E. Schoenfield, Jun 02 2019

Crossrefs

Contains subsequence A088832.

Programs

  • PARI
    isok(k) = Mod(sigma(k), k) == 4; \\ Michel Marcus, Jan 04 2023

Extensions

a(13) from Harvey P. Dale, Mar 20 2011
Initial term 1 inserted and a(14)-a(16) from Donovan Johnson, Mar 01 2012
Term 3 inserted by Michel Marcus, Jan 04 2023
a(18) from Jon E. Schoenfield confirmed, and a(17), a(19) added by Max Alekseyev, Jun 08 2025

A088834 Numbers k such that sigma(k) == 6 (mod k).

Original entry on oeis.org

1, 5, 6, 25, 180, 8925, 32445, 442365
Offset: 1

Views

Author

Labos Elemer, Oct 29 2003

Keywords

Comments

For each integer j in A059609, 2^(j-1)*(2^j - 7) is in the sequence. E.g., for j = A059609(1) = 39 we get 151115727449904501489664. - M. F. Hasler and Farideh Firoozbakht, Dec 03 2013
No more terms to 10^10. - Charles R Greathouse IV, Dec 05 2013
a(9) > 10^13. - Giovanni Resta, Apr 02 2014
a(9) > 1.5*10^14. - Jud McCranie, Jun 02 2019
No more terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			Sigma(25) = 31 = 1*25 + 6, so 31 mod 25 = 6.
		

Crossrefs

Cf. A087167 (a subsequence).
Cf. A059609.

Programs

  • Mathematica
    Select[Range[1000000], Mod[DivisorSigma[1, #] - 6, #] == 0 &] (* T. D. Noe, Dec 03 2013 *)
  • PARI
    isok(n) = Mod(sigma(n), n) == 6; \\ Michel Marcus, Jan 03 2023

Extensions

Terms corrected by Charles R Greathouse IV and Farideh Firoozbakht, Dec 03 2013

A108775 a(n) = floor(sigma(n)/n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Franz Vrabec, Jun 27 2005

Keywords

Comments

The sequence is unbounded. - Vrabec
First occurrence of k: 1,6,120,27720,..., which is A023199. - Robert G. Wilson v, Jun 28 2005
a(n) > 1 if n is perfect or abundant. a(n) = 2 if n is perfect or primitive abundant (see A091191). - Alonso del Arte, Feb 06 2012

Examples

			a(6) = 2 because sigma(6)/6 = (1 + 2 + 3 + 6)/6 = 2.
		

References

  • W. Sierpinski, Elementary Theory of Numbers, 1987, p. 174 ff.

Crossrefs

Programs

Formula

a(n) = floor(A017665(n)/A017666(n)). - Michel Marcus, Sep 18 2015

Extensions

More terms from Robert G. Wilson v, Jun 28 2005

A242480 a(n) = (n*(n+1)/2) mod n + sigma(n) mod n + antisigma(n) mod n.

Original entry on oeis.org

0, 2, 3, 8, 5, 6, 7, 16, 9, 20, 11, 12, 13, 28, 15, 32, 17, 18, 19, 20, 21, 44, 23, 24, 25, 52, 27, 28, 29, 30, 31, 64, 33, 68, 35, 72, 37, 76, 39, 40, 41, 42, 43, 88, 45, 92, 47, 96, 49, 100, 51, 104, 53, 54, 55, 56, 57, 116, 59, 120, 61, 124, 63, 128, 65, 66
Offset: 1

Views

Author

Jaroslav Krizek, May 16 2014

Keywords

Comments

a(n) / n = 1 for numbers n from A242482, a(n) / n = 2 for numbers n from A242483.
If there are any odd multiply-perfect numbers n > 1 then a(n) = 0.
Possible values of a(n) in increasing order = A242485. Numbers m such that a(n) = m has no solution = A242486.

Examples

			a(8) = (8*(8+1)/2) mod 8 + sigma(8) mod 8 + antisigma(8) mod 8 = 36 mod 8 + 15 mod 8 + 21 mod 8 = 4 + 7 + 5 = 16.
		

Crossrefs

Programs

  • Magma
    [((n*(n+1)div 2 mod n + SumOfDivisors(n) mod n + (n*(n+1)div 2-SumOfDivisors(n)) mod n)): n in [1..1000]]

Formula

a(n) = A142150(n) + A054024(n) + A229110(n) = (A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n).
a(n) = A242481(n) * n.

A242481 a(n) = ((n*(n+1)/2) mod n + sigma(n) mod n + antisigma(n) mod n) / n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, May 16 2014

Keywords

Comments

a(1) = 0. If there is no odd multiply-perfect number then a(n) = 1 or 2 for n >= 2. See A242482 = numbers m such that a(n) = 1, A242483 = numbers m such that a(n) = 2. If there are any odd multiply-perfect numbers m > 1 then a(m) = 0.

Examples

			a(8) = [(8*(8+1)/2) mod 8 + sigma(8) mod 8 + antisigma(8) mod 8] / 8 = (36 mod 8 + 15 mod 8 + 21 mod 8) / 8 = (4 + 7 + 5 ) / 8 = 2.
		

Crossrefs

Programs

  • Magma
    [((n*(n+1)div 2 mod n + SumOfDivisors(n) mod n + (n*(n+1)div 2-SumOfDivisors(n)) mod n))div n: n in [1..1000]]

Formula

a(n) = (A142150(n) + A054024(n) + A229110(n)) / n = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) / n.
a(n) = A242480(n) / n.

A242482 Numbers n such that A242481(n) = ((n*(n+1)/2) mod n + sigma(n) mod n + antisigma(n) mod n) / n = 1.

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 37, 39, 40, 41, 42, 43, 45, 47, 49, 51, 53, 54, 55, 56, 57, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 80, 81, 83, 85, 87, 88, 89, 91, 93, 95, 97, 99
Offset: 1

Views

Author

Jaroslav Krizek, May 16 2014

Keywords

Comments

Numbers n such that A242480(n) = (1/2*n*(n+1)) mod n + sigma(n) mod n + antisigma(n) mod n = (A142150(n) + A054024(n) + A229110(n)) = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) = n. Numbers n such that A242481(n) = (A142150(n) + A054024(n) + A229110(n)) / n = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) / n = 1.
Conjecture: with number 1 complement of A242483.
Supersequence of primes (A000040).
If there is no odd multiply-perfect number, then:
(1) a(n) = union of odd numbers >= 3 and even numbers from A239719.
(2) a(n) = supersequence of odd numbers (A005408).

Examples

			6 is in sequence because [(6*(6+1)/2) mod 6 + sigma(6) mod 6 + antisigma(6) mod 6] / 6 = (21 mod 6 + 12 mod 6 + 9 mod 6) / 6 = (3 + 0 + 3 ) / 6 = 1.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | n eq ((n*(n+1)div 2 mod n + SumOfDivisors(n) mod n + (n*(n+1)div 2-SumOfDivisors(n)) mod n))]

A242483 Numbers n such that A242481(n) = ((n*(n+1)/2) mod n + sigma(n) mod n + antisigma(n) mod n) / n = 2.

Original entry on oeis.org

4, 8, 10, 14, 16, 22, 26, 32, 34, 36, 38, 44, 46, 48, 50, 52, 58, 60, 62, 64, 68, 72, 74, 76, 82, 84, 86, 90, 92, 94, 96, 98, 106, 108, 110, 116, 118, 122, 124, 128, 130, 132, 134, 136, 142, 144, 146, 148, 152, 154, 156, 158, 164, 166, 168, 170, 172, 178, 182
Offset: 1

Views

Author

Jaroslav Krizek, May 16 2014

Keywords

Comments

Numbers n such that A242480(n) = (n*(n+1)/2) mod n + sigma(n) mod n + antisigma(n) mod n = (A142150(n) + A054024(n) + A229110(n)) = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) = 2n. Numbers n such that A242481(n) = (A142150(n) + A054024(n) + A229110(n)) / n = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) / n = 2.
Conjecture: with number 1 complement of A242482.

Examples

			8 is in sequence because [(8*(8+1)/2) mod 8 + sigma(8) mod 8 + antisigma(8) mod 8] / 8 = (36 mod 8 + 15 mod 8 + 21 mod 8) / 8 = (4 + 7 + 5 ) / 8 = 2.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | 2 eq (((n*(n+1)div 2 mod n + SumOfDivisors(n) mod n + (n*(n+1)div 2-SumOfDivisors(n)) mod n)))div n]

A205523 Numbers k such that gcd(k, sigma(k)) == sigma(k) (mod k).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 12, 13, 17, 18, 19, 20, 23, 24, 28, 29, 31, 37, 40, 41, 43, 47, 53, 56, 59, 61, 67, 71, 73, 79, 83, 88, 89, 97, 101, 103, 104, 107, 109, 113, 120, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 180, 181, 191, 193, 196, 197, 199
Offset: 1

Views

Author

Jaroslav Krizek, Jan 28 2012

Keywords

Comments

Numbers m such that A009194(m) = gcd(m, A000203(m)) = A000203(m) mod m = A054024(m).
Complement of A205524. Union of primes (A000040) and composite numbers from A205525.

Examples

			Number 24 is in sequence because gcd(24, sigma(24)) = (sigma(24)=60) mod 24 = 12.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300], Mod[GCD[#, DivisorSigma[1, #]] - DivisorSigma[1, #], #] == 0 &]
  • PARI
    isok(n) = (gcd(n, sigma(n)) % n) == (sigma(n) % n); \\ Michel Marcus, Dec 22 2017

Extensions

Corrected by T. D. Noe, Feb 03 2012

A242485 Possible values of A242480(n) in increasing order.

Original entry on oeis.org

0, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 47, 49, 51, 52, 53, 54, 55, 56, 57, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 83
Offset: 1

Views

Author

Jaroslav Krizek, May 27 2014

Keywords

Comments

A242480(n) = (n*(n+1)/2) mod n + sigma(n) mod n + antisigma(n) mod n = A142150(n) + A054024(n) + A229110(n) = (A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n).
Supersequence of odd numbers > 1. Complement of A242486.

Examples

			16 is in the sequence because there is a number m such that A242480(m) = 16; m = 8.
		

Crossrefs

Previous Showing 11-20 of 43 results. Next