cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A368296 Square array T(n,k), n >= 2, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * floor(j/2).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 4, 8, 6, 3, 1, 5, 14, 18, 9, 3, 1, 6, 22, 44, 39, 12, 4, 1, 7, 32, 90, 135, 81, 16, 4, 1, 8, 44, 162, 363, 408, 166, 20, 5, 1, 9, 58, 266, 813, 1455, 1228, 336, 25, 5, 1, 10, 74, 408, 1599, 4068, 5824, 3688, 677, 30, 6
Offset: 2

Views

Author

Seiichi Manyama, Dec 20 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1,     1, ...
  1,  2,   3,    4,    5,     6,     7, ...
  2,  4,   8,   14,   22,    32,    44, ...
  2,  6,  18,   44,   90,   162,   266, ...
  3,  9,  39,  135,  363,   813,  1599, ...
  3, 12,  81,  408, 1455,  4068,  9597, ...
  4, 16, 166, 1228, 5824, 20344, 57586, ...
		

Crossrefs

Programs

  • PARI
    T(n, k) = (-((n+1)\2)+sum(j=1, n, j*k^(n-j)))/(k+1);

Formula

T(n,k) = T(n-2,k) + Sum_{j=0..n-2} k^j.
T(n,k) = 1/(k+1) * (-floor((n+1)/2) + Sum_{j=1..n} j*k^(n-j)).
T(n,k) = 1/(k-1) * Sum_{j=0..n} floor(k^j/(k+1)) = Sum_{j=0..n} floor(k^j/(k^2-1)) for k > 1.
T(n,k) = (k+1)*T(n-1,k) - (k-1)*T(n-2,k) - (k+1)*T(n-3,k) + k*T(n-4,k).
G.f. of column k: x^2/((1-x) * (1-k*x) * (1-x^2)).
T(n,k) = 1/(k-1) * (floor(k^(n+1)/(k^2-1)) - floor((n+1)/2)) for k > 1.

A053717 a(n) = n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1.

Original entry on oeis.org

1, 8, 255, 3280, 21845, 97656, 335923, 960800, 2396745, 5380840, 11111111, 21435888, 39089245, 67977560, 113522235, 183063616, 286331153, 435984840, 648232975, 943531280, 1347368421, 1891142968, 2613136835, 3559590240, 4785883225, 6357828776, 8353082583
Offset: 0

Views

Author

Henry Bottomley, Mar 23 2000

Keywords

Comments

a(n) = 11111111 in base n for n>0.

Examples

			a(3) = 3280 because 11111111 base 3 = 2187+729+243+81+27+9+3+1 = 3280.
		

Crossrefs

8th row of the array A055129.
Cf. A104878.

Programs

Formula

a(n) = (n^8-1)/(n-1) for n != 1.
G.f.: 1 -x*(x^7-8*x^6-57*x^5-1016*x^4-2297*x^3-1464*x^2-191*x-8)/(x-1)^8. - Colin Barker, Oct 29 2012
E.g.f.: exp(x)*(1 + 7*x + 120*x^2 + 423*x^3 + 426*x^4 + 156*x^5 + 22*x^6 + x^7). - Stefano Spezia, Oct 03 2024
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Wesley Ivan Hurt, Jun 19 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, May 04 2021

A062160 Square array T(n,k) = (n^k - (-1)^k)/(n+1), n >= 0, k >= 0, read by falling antidiagonals.

Original entry on oeis.org

0, 1, 0, -1, 1, 0, 1, 0, 1, 0, -1, 1, 1, 1, 0, 1, 0, 3, 2, 1, 0, -1, 1, 5, 7, 3, 1, 0, 1, 0, 11, 20, 13, 4, 1, 0, -1, 1, 21, 61, 51, 21, 5, 1, 0, 1, 0, 43, 182, 205, 104, 31, 6, 1, 0, -1, 1, 85, 547, 819, 521, 185, 43, 7, 1, 0, 1, 0, 171, 1640, 3277, 2604, 1111, 300, 57, 8, 1, 0, -1, 1, 341, 4921, 13107, 13021, 6665, 2101, 455, 73, 9, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2001

Keywords

Comments

For n >= 1, T(n, k) equals the number of walks of length k between any two distinct vertices of the complete graph K_(n+1). - Peter Bala, May 30 2024

Examples

			From _Seiichi Manyama_, Apr 12 2019: (Start)
Square array begins:
   0, 1, -1,  1,  -1,    1,    -1,      1, ...
   0, 1,  0,  1,   0,    1,     0,      1, ...
   0, 1,  1,  3,   5,   11,    21,     43, ...
   0, 1,  2,  7,  20,   61,   182,    547, ...
   0, 1,  3, 13,  51,  205,   819,   3277, ...
   0, 1,  4, 21, 104,  521,  2604,  13021, ...
   0, 1,  5, 31, 185, 1111,  6665,  39991, ...
   0, 1,  6, 43, 300, 2101, 14706, 102943, ... (End)
		

Crossrefs

Related to repunits in negative bases (cf. A055129 for positive bases).
Main diagonal gives A081216.
Cf. A109502.

Programs

  • Maple
    seq(print(seq((n^k - (-1)^k)/(n+1), k = 0..10)), n = 0..10); # Peter Bala, May 31 2024
  • Mathematica
    T[n_,k_]:=(n^k - (-1)^k)/(n+1); Join[{0},Table[Reverse[Table[T[n-k,k],{k,0,n}]],{n,12}]]//Flatten (* Stefano Spezia, Feb 20 2024 *)

Formula

T(n, k) = n^(k-1) - n^(k-2) + n^(k-3) - ... + (-1)^(k-1) = n^(k-1) - T(n, k-1) = n*T(n, k-1) - (-1)^k = (n - 1)*T(n, k-1) + n*T(n, k-2) = round[n^k/(n+1)] for n > 1.
T(n, k) = (-1)^(k+1) * resultant( n*x + 1, (x^k-1)/(x-1) ). - Max Alekseyev, Sep 28 2021
G.f. of row n: x/((1+x) * (1-n*x)). - Seiichi Manyama, Apr 12 2019
E.g.f. of row n: (exp(n*x) - exp(-x))/(n+1). - Stefano Spezia, Feb 20 2024
From Peter Bala, May 31 2024: (Start)
Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = (m + 1)^(n-1) for n >= 1.
Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1 + m_2 + m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A109502.
T(m_1 + m_2 + m_1*m_2, k) = Sum_{i = 0..k} Sum_{j = i..k} binomial(k, i)* binomial(k-i, j-i)*T(m_1, j)*T(m_2, k-i). (End)

A333979 Array read by antidiagonals, n >= 0, k >= 2: T(n,k) is the "digital derivative" of n in base k; if the base k representation of n is Sum_{j>=0} d_j*k^j, then T(n,k) = Sum_{j>=1} d_j*j*k^(j-1).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 1, 1, 5, 0, 0, 0, 0, 0, 1, 2, 5, 0, 0, 0, 0, 0, 1, 1, 2, 12, 0, 0, 0, 0, 0, 0, 1, 1, 2, 12, 0, 0, 0, 0, 0, 0, 1, 1, 2, 6, 13, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 6, 13
Offset: 0

Views

Author

Pontus von Brömssen, Sep 04 2020

Keywords

Examples

			Array begins:
  n\k|  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16
  ---|---------------------------------------------
   0 |  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
   1 |  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
   2 |  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
   3 |  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0
   4 |  4  1  1  0  0  0  0  0  0  0  0  0  0  0  0
   5 |  4  1  1  1  0  0  0  0  0  0  0  0  0  0  0
   6 |  5  2  1  1  1  0  0  0  0  0  0  0  0  0  0
   7 |  5  2  1  1  1  1  0  0  0  0  0  0  0  0  0
   8 | 12  2  2  1  1  1  1  0  0  0  0  0  0  0  0
   9 | 12  6  2  1  1  1  1  1  0  0  0  0  0  0  0
  10 | 13  6  2  2  1  1  1  1  1  0  0  0  0  0  0
  11 | 13  6  2  2  1  1  1  1  1  1  0  0  0  0  0
  12 | 16  7  3  2  2  1  1  1  1  1  1  0  0  0  0
  13 | 16  7  3  2  2  1  1  1  1  1  1  1  0  0  0
  14 | 17  7  3  2  2  2  1  1  1  1  1  1  1  0  0
  15 | 17  8  3  3  2  2  1  1  1  1  1  1  1  1  0
  16 | 32  8  8  3  2  2  2  1  1  1  1  1  1  1  1
64 = 2*3^3 + 1*3^2 + 0*3^1 + 1*3^0, so T(64,3) = 2*3*3^2 + 1*2*3^1 + 0*1*3^0 = 60. Alternatively, using the formula T(n,k) = floor(n/k) + k*T(floor(n/k),k), we get T(64,3) = 21 + 3*T(21,3) = 21 + 3*(7 + 3*T(7,3)) = 42 + 9*(2 + 3*T(2,3)) = 60.
		

Crossrefs

Cf. A136013 (column k=2), A080277 (every second term of column k=2), A080333 (every third term of column k=3).

Programs

  • Python
    import sympy
    def A333979(n,k):
      d=sympy.ntheory.factor_.digits(n,k)
      return sum(j*d[-j-1]*k**(j-1) for j in range(1,len(d)-1))
    
  • Python
    # Second program (faster)
    def A333979(n,k):
      return n//k+k*A333979(n//k,k) if n>=k else 0

Formula

T(n,k) = floor(n/k) + k*T(floor(n/k),k). Proof: With n = Sum_{j>=0} d_j*k^j we have floor(n/k) + k*T(floor(n/k),k) = Sum_{j>=1} (d_j*k^(j-1) + k*d_j*(j-1)*k^(j-2)) = Sum_{j>=1} d_j*j*k^(j-1) = T(n,k).
T(n,k) = T(n-1,k) + A055129(A286561(n,k),k). Proof: Let n = Sum_{j>=0} d_j*k^j and pick v so that d_j = 0 for j < v and d_v > 0 (so v = A286561(n,k)). Then n - 1 = sum_{j>=0} e_j*k^j, where e_j = k - 1 for j < v, e_v = d_v - 1, and e_j = d_j for j > v. We get T(n,k) - T(n-1,k) = Sum_{j>=1} j*(d_j-e_j)*k^(j-1) = v*k^(v-1) - (k-1)*Sum_{1<=jA055129(A286561(n,k),k).
For fixed k, T(n,k) ~ n*log(n)/(k*log(k)). (The proof for k = 2 by Bannister et al. (p. 182) can be adapted to general k.)
T(n,k) = Sum_{j>=0} k^j*floor(n/k**(j+1)).

A368343 Square array T(n,k), n >= 3, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * floor(j/3).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 1, 4, 7, 5, 2, 1, 5, 13, 16, 7, 2, 1, 6, 21, 41, 34, 9, 3, 1, 7, 31, 86, 125, 70, 12, 3, 1, 8, 43, 157, 346, 377, 143, 15, 3, 1, 9, 57, 260, 787, 1386, 1134, 289, 18, 4, 1, 10, 73, 401, 1562, 3937, 5547, 3405, 581, 22, 4
Offset: 3

Views

Author

Seiichi Manyama, Dec 22 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1,     1, ...
  1,  2,   3,    4,    5,     6,     7, ...
  1,  3,   7,   13,   21,    31,    43, ...
  2,  5,  16,   41,   86,   157,   260, ...
  2,  7,  34,  125,  346,   787,  1562, ...
  2,  9,  70,  377, 1386,  3937,  9374, ...
  3, 12, 143, 1134, 5547, 19688, 56247, ...
		

Crossrefs

Columns k=0..4 give A002264, A130518, A178455, A368344, A368345.

Programs

  • PARI
    T(n, k) = sum(j=0, n, k^(n-j)*(j\3));

Formula

T(n,k) = T(n-3,k) + Sum_{j=0..n-3} k^j.
T(n,k) = 1/(k-1) * Sum_{j=0..n} floor(k^j/(k^2+k+1)) = Sum_{j=0..n} floor(k^j/(k^3-1)) for k > 1.
T(n,k) = (k+1)*T(n-1,k) - k*T(n-2,k) + T(n-3,k) - (k+1)*T(n-4,k) + k*T(n-5,k).
G.f. of column k: x^3/((1-x) * (1-k*x) * (1-x^3)).
T(n,k) = 1/(k-1) * (floor(k^(n+1)/(k^3-1)) - floor((n+1)/3)) for k > 1.

A125598 a(n) = ((n+1)^(n-1) - 1)/n.

Original entry on oeis.org

0, 1, 5, 31, 259, 2801, 37449, 597871, 11111111, 235794769, 5628851293, 149346699503, 4361070182715, 139013933454241, 4803839602528529, 178901440719363487, 7143501829211426575, 304465936543600121441
Offset: 1

Views

Author

Alexander Adamchuk, Nov 26 2006

Keywords

Comments

Odd prime p divides a(p-2).
a(n) is prime for n = {3,4,6,74, ...}; prime terms are {5, 31, 2801, ...}.
a(n) is the (n-1)-th generalized repunit in base (n+1). For example, a(5) = 259 which is 1111 in base 6. - Mathew Englander, Oct 20 2020

Crossrefs

Cf. A000272 (n^(n-2)), A125599.
Cf. other sequences of generalized repunits, such as A125118, A053696, A055129, A060072, A031973, A173468, A023037, A119598, A085104, and A162861.

Programs

  • Magma
    [((n+1)^(n-1) -1)/n: n in [1..25]]; // G. C. Greubel, Aug 15 2022
  • Mathematica
    Table[((n+1)^(n-1)-1)/n, {n,25}]
  • Sage
    [gaussian_binomial(n,1,n+2) for n in range(0,18)] # Zerinvary Lajos, May 31 2009
    

Formula

a(n) = ((n+1)^(n-1) - 1)/n.
a(n) = (A000272(n+1) - 1)/n.
a(2k-1)/(2k+1) = A125599(k) for k>0.
From Mathew Englander, Dec 17 2020: (Start)
a(n) = (A060072(n+1) - A083069(n-1))/2.
For n > 1, a(n) = Sum_{k=0..n-2} (n+1)^k.
For n > 1, a(n) = Sum_{j=0..n-2} n^j*C(n-1,j+1). (End)

A067763 Square array read by antidiagonals of base n numbers written as 122...222 with k 2's (and a suitable interpretation for n=0, 1 or 2).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 7, 10, 5, 1, 2, 9, 22, 17, 6, 1, 2, 11, 46, 53, 26, 7, 1, 2, 13, 94, 161, 106, 37, 8, 1, 2, 15, 190, 485, 426, 187, 50, 9, 1, 2, 17, 382, 1457, 1706, 937, 302, 65, 10, 1, 2, 19, 766, 4373, 6826, 4687, 1814, 457, 82, 11, 1, 2, 21, 1534, 13121
Offset: 0

Views

Author

Henry Bottomley, Feb 06 2002

Keywords

Comments

Start with a node; step one is to connect that node to n+1 new nodes so that it is of degree n+1; further steps are to connect each existing node of degree 1 to n new nodes so that it is of degree n+1; T(n,k) is the total number of nodes after k steps.

Examples

			Rows start: 1,2,2,2,2,2,...; 1,3,5,7,9,11,...; 1,4,10,22,46,94,...; 1,5,17,53,161,485,... T(3,2) =122 base 3 =17.
		

Crossrefs

Rows include A040000, A005408, A033484, A048473, A020989, A057651, A061801 etc. For negative n (not shown) absolute values of rows would effectively include A000012, A014113, A046717.

Formula

T(n, k) =((n+1)*n^k-2)/(n-1) [with T(1, k)=2k+1] =n*T(n, k-1)+2 =(n+1)*T(n, k-1)-n*T(n, k-2) =T(n, k-1)+(1+1/n)*n^k =A055129(k, n)+A055129(k-1, n). Coefficient of x^k in expansion of (1+x)/((1-x)(1-nx)).

A122873 Triangle T(n,k) = smallest number whose square has largest digit k in base n, 0<=k

Original entry on oeis.org

0, 0, 1, 0, 1, 4, 0, 1, 3, 7, 0, 1, 6, 4, 2, 0, 1, 7, 3, 2, 14, 0, 1, 3, 11, 2, 6, 12, 0, 1, 4, 5, 2, 13, 7, 11, 0, 1, 10, 91, 2, 7, 28, 4, 20, 0, 1, 11, 111, 2, 5, 4, 24, 9, 3, 0, 1, 12, 5, 2, 4, 26, 9, 24, 3, 19, 0, 1, 5, 6, 2, 8, 19, 32, 10, 3, 11, 40, 0, 1, 14, 4, 2, 24, 9, 35, 28, 3, 6, 12, 5
Offset: 1

Views

Author

Keywords

Comments

Repunits in base n are an upper bound, since 11...11^2 = 12...(k)...21 in any sufficiently large base.

Examples

			Row 10: 0,1,11,111,2,5,4,24,9,3, has squares 0,1,121,12321,4,25,16,576,81,9, with digits 0,...,9 as the respective largest digits.
		

Crossrefs

Previous Showing 11-18 of 18 results.