cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A321323 Numbers k such that k^(2^20) + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 919444, 1059094, 1951734, 1963736, 3843236
Offset: 1

Views

Author

Jeppe Stig Nielsen, Nov 04 2018

Keywords

Crossrefs

Extensions

a(4) from Jeppe Stig Nielsen, Aug 31 2022
a(5) from Jeppe Stig Nielsen, Oct 21 2022
a(6) from Jeppe Stig Nielsen, Jan 11 2025

A246397 Numbers n such that Phi(12, n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 4, 5, 9, 10, 12, 13, 17, 25, 27, 30, 31, 36, 38, 39, 43, 48, 52, 55, 56, 61, 62, 65, 83, 92, 94, 99, 100, 104, 105, 109, 114, 118, 126, 131, 166, 168, 169, 172, 183, 185, 190, 194, 196, 198, 209, 224, 225, 229, 231, 239, 244, 257, 260, 261, 263, 269, 270, 272, 278, 291, 296, 299, 300, 302, 308, 311
Offset: 1

Views

Author

Eric Chen, Nov 13 2014

Keywords

Comments

Numbers n such that n^4-n^2+1 is prime, or numbers n such that A060886(n) is prime.

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862 (11), this sequence (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).

Programs

  • Maple
    A246397:=n->`if`(isprime(n^4-n^2+1),n,NULL): seq(A246397(n),n=1..300); # Wesley Ivan Hurt, Nov 14 2014
  • Mathematica
    Select[Range[350], PrimeQ[Cyclotomic[12, #]] &] (* Vincenzo Librandi, Jan 17 2015 *)
  • PARI
    for(n=1,10^3,if(isprime(polcyclo(12,n)),print1(n,", "))); \\ Joerg Arndt, Nov 13 2014

A123599 Smallest generalized Fermat prime of the form a^(2^n) + 1, where base a>1 is an integer; or -1 if no such prime exists.

Original entry on oeis.org

3, 5, 17, 257, 65537, 185302018885184100000000000000000000000000000001
Offset: 0

Views

Author

Alexander Adamchuk, Nov 14 2006

Keywords

Comments

First 5 terms {3, 5, 17, 257, 65537} = A019434 are the Fermat primes of the form 2^(2^n) + 1. Note that for all currently known a(n) up to n = 17 last digit is 7 or 1 (except a(0) = 3 and a(1) = 5). Corresponding least bases a>1 such that a^(2^n) + 1 is prime are listed in A056993.
The last-digit behavior clearly continues since, for any a, we have that a^(2^2) will be either 0 or 1 modulo 5. So for n >= 2, a(n) is 1 or 2 modulo 5, and odd. - Jeppe Stig Nielsen, Nov 16 2020

Crossrefs

Programs

  • Mathematica
    Do[f=Min[Select[ Table[ i^(2^n) + 1, {i, 2, 500} ],PrimeQ]];Print[{n,f}],{n,0,9}]

A250177 Numbers n such that Phi_21(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

3, 6, 7, 12, 22, 27, 28, 35, 41, 59, 63, 69, 112, 127, 132, 133, 136, 140, 164, 166, 202, 215, 218, 276, 288, 307, 323, 334, 343, 377, 383, 433, 474, 479, 516, 519, 521, 532, 538, 549, 575, 586, 622, 647, 675, 680, 692, 733, 790, 815, 822, 902, 909, 911, 915, 952, 966, 1025, 1034, 1048, 1093
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A250392 (10), A162862 (11), A246397 (12), A217070 (13), A250174 (14), A250175 (15), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A250176 (20), this sequence (21), A250178 (22), A217073 (23), A250179 (24), A250180 (25), A250181 (26), A153440 (27), A250182 (28), A217074 (29), A250183 (30), A217075 (31), A006313 (32), A250184 (33), A250185 (34), A250186 (35), A097475 (36), A217076 (37), A250187 (38), A250188 (39), A250189 (40), A217077 (41), A250190 (42), A217078 (43), A250191 (44), A250192 (45), A250193 (46), A217079 (47), A250194 (48), A250195 (49), A250196 (50), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536), A251597 (131072), A244150 (524287), A243959 (1048576).
Cf. A085398 (Least k>1 such that Phi_n(k) is prime).

Programs

  • Mathematica
    a250177[n_] := Select[Range[n], PrimeQ@Cyclotomic[21, #] &]; a250177[1100] (* Michael De Vlieger, Dec 25 2014 *)
  • PARI
    {is(n)=isprime(polcyclo(21,n))};
    for(n=1,100, if(is(n)==1, print1(n, ", "), 0)) \\ G. C. Greubel, Apr 14 2018

A070025 At these values of k, the 1st, 2nd, 3rd and 4th cyclotomic polynomials all give prime numbers.

Original entry on oeis.org

6, 150, 2730, 9000, 9240, 35280, 41760, 43050, 53280, 65520, 76650, 96180, 111030, 148200, 197370, 207480, 213360, 226380, 254280, 264600, 309480, 332160, 342450, 352740, 375450, 381990, 440550, 458790, 501030, 527070, 552030, 642360, 660810
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers k such that k-1, k+1, k^2+k+1 and k^2+1 are all primes.

Examples

			For k = 6: 5, 7, 43 and 37 are prime values of the first 4 cyclotomic polynomials.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1]&&PrimeQ[1+n+n^2]&&PrimeQ[1+n^2], AppendTo[lst, n]], {n, 10^6}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *)
    Select[Range[10^6], Function[k, AllTrue[Cyclotomic[#, k] & /@ Range@ 4, PrimeQ]]] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^2+k+1); \\ Amiram Eldar, Sep 24 2024

A085298 a(n) is the smallest exponent x such that prime(n)^x when reversed is a prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 8, 7, 1, 1, 2, 5, 15, 10, 12, 4, 39, 1, 1, 1, 11, 2, 1, 1, 10, 1, 23, 1, 5, 1, 243, 2, 1, 1, 1, 23, 1, 34, 1, 1, 1, 2, 58, 1, 3, 9, 166, 17, 68, 8, 8, 3, 7, 5, 5, 2, 2, 2, 61, 11, 97, 1, 1, 10, 2, 1, 1, 41, 1, 1, 66, 1, 5, 1, 1, 2, 2, 8, 40, 2, 8, 19, 2, 2, 723
Offset: 1

Views

Author

Labos Elemer, Jun 24 2003

Keywords

Comments

It is conjectured that for every n such exponent exists.

Examples

			a(n)=1 means that rev(prime(n)) is prime i.e. prime(n) is in A007500;
a(n)=2 means that rev(prime(n)^2) is prime but rev(prime(n)) is not, like n=8:p=19 and 91 is not a prime but rev[19^2]=rev[361]=163 is a prime;
For n, the first k exponent providing rev(prime(n)^k) prime can be quite large, like at n=87: rev(p(87)^723)=rev(449^723) is the first [probably] prime has 1918 decimal digits: 948......573.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local k, p; p:= ithprime(n); for k while not isprime((s->
          parse(cat(seq(s[-i], i=1..length(s)))))(""||(p^k))) do od; k
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    a[n_] := Block[{k = 1}, While[! PrimeQ@ FromDigits@ Reverse@ IntegerDigits[ Prime[n]^k], k++]; k]; Array[a, 87] (* Giovanni Resta, Sep 04 2019 *)
  • PARI
    a(n) = {my(x=1, p=prime(n)); while (!ispseudoprime(fromdigits(Vecrev(digits(p^x)))), x++); x;} \\ Michel Marcus, Sep 04 2019

Formula

a(n) = Min{x; reversed(prime(n)^x) is a prime}.

A070020 At these values of k the first, 2nd and 3rd cyclotomic polynomials all give prime numbers.

Original entry on oeis.org

6, 12, 138, 150, 192, 348, 642, 1020, 1092, 1230, 1620, 1788, 1932, 2112, 2142, 2238, 2658, 2688, 2730, 3330, 3540, 3918, 4002, 4158, 5010, 5640, 6090, 6450, 6552, 6702, 7950, 8088, 9000, 9042, 9240, 9462, 9768, 10008, 10092, 10272, 10302, 10332
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers k such that k-1, k+1 and k^2+k+1 are all primes.

Examples

			For k = 6: 5, 7 and 43 are prime values of the first 3 cyclotomic polynomials.
		

Crossrefs

Programs

  • Mathematica
    psQ[n_]:=And@@PrimeQ[{n-1,n+1,n^2+n+1}]; Select[Range[11000],psQ] (* Harvey P. Dale, Nov 05 2011 *)
    Select[Range[10500], AllTrue[Cyclotomic[Range@ 3, #], PrimeQ] &] (* Michael De Vlieger, Dec 08 2018 *)
  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+k+1); \\ Amiram Eldar, Sep 24 2024

A070042 At these values of k the 1st, 2nd, 3rd, 4th and 5th cyclotomic polynomials all give prime numbers.

Original entry on oeis.org

1068630, 1441590, 1867950, 3429300, 4084230, 5651730, 6322890, 6770610, 7158630, 7804830, 9437760, 9624270, 13625850, 23194860, 25848840, 26588520, 28714950, 29451840, 32984430, 33650580, 36500910, 38177130, 42856590, 49531020, 50016540, 50222070, 52083330, 54637590
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers k such that C1(k) = k-1, C2(k) = k+1, C3(k) = k^2+k+1, C4(k) = k^2+1 and C5(k) = k^4+k^3+k^2+k+1 are all primes.

Examples

			For k = 1068630: the 1st, 2nd, 3rd, 4th and 5th cyclotomic polynomials give a quintet of primes: {1068629, 1068631, 1141971145531, 1141970076901, 1304096876879617162402531}.
		

Crossrefs

Programs

  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^2+k+1) && isprime(k^4+k^3+k^2+k+1) ; \\ Amiram Eldar, Sep 24 2024

Extensions

More terms from Don Reble, May 11 2002
a(24)-a(28) from Amiram Eldar, Sep 24 2024

A085300 a(n) is the least prime x such that when reversed it is a power of prime(n).

Original entry on oeis.org

2, 3, 5, 7, 11, 31, 71, 163, 18258901387, 90367894271, 13, 73, 1861, 344800741, 34351783286302805384336021, 940315563074788471, 1886172359328147919771, 14854831
Offset: 1

Views

Author

Labos Elemer, Jun 24 2003

Keywords

Comments

A006567 (after rearranging terms) and A002385 are subsequences. - Chai Wah Wu, Jun 02 2016

Examples

			a(14)=344800741 means that 147008443=43^5=p(14)^5, where 5 is the smallest such exponent;
a(19) has 82 decimal digits and if reversed equals 39th power of p(19)=67.
		

Crossrefs

Programs

  • Python
    from sympy import prime, isprime
    def A085300(n):
        p = prime(n)
        q = p
        while True:
            m = int(str(q)[::-1])
            if isprime(m):
                return(m)
            q *= p # Chai Wah Wu, Jun 02 2016

A250175 Numbers n such that Phi_15(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 11, 17, 23, 43, 46, 52, 53, 61, 62, 78, 84, 88, 89, 92, 99, 108, 123, 124, 141, 146, 154, 156, 158, 163, 170, 171, 182, 187, 202, 217, 219, 221, 229, 233, 238, 248, 249, 253, 264, 274, 275, 278, 283, 285, 287, 291, 296, 302, 309, 314, 315, 322, 325, 342, 346, 353, 356, 366, 368, 372, 377, 380, 384, 394, 404, 406, 411, 420, 425
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[15, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
  • PARI
    isok(n) = isprime(polcyclo(15, n)); \\ Michel Marcus, Jan 16 2015

Extensions

More terms from Vincenzo Librandi, Jan 16 2015
Previous Showing 21-30 of 38 results. Next