cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A058404 Coefficient triangle of polynomials (falling powers) related to Pell number convolutions. Companion triangle is A058405.

Original entry on oeis.org

1, 8, 22, 56, 376, 588, 384, 4576, 17024, 19656, 2624, 48256, 313504, 848096, 801360, 17920, 468608, 4643072, 21685888, 47494272, 38797920, 122368, 4307456, 60136448, 424509952, 1590913920, 2986217856, 2181332160, 835584, 38055936
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 2000

Keywords

Comments

The row polynomials are p(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,..
The k-th convolution of P0(n) := A000129(n+1), n >= 0, (Pell numbers starting with P0(0)=1) with itself is Pk(n) := A054456(n+k,k) = (p(k-1,n)*(n+1)*2*P0(n+1) + q(k-1,n)*(n+2)*P0(n))/(k!*8^k), k=1,2,..., where the companion polynomials q(k,n) := sum(b(k,m)*n^(k-m),m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A058405(k,m).
a(k,0)= A057084(k), k >= 0 (conjecture).

Examples

			k=2: P2(n)=(8*n+22)*(n+1)*2*P0(n+1)+(8*n+20)*(n+2)*P0(n))/128, cf. A054457.
1; 8,22; 56,376,588; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0)
		

Crossrefs

Cf. A000129, A054456, A058405, A054457, A057084, A058402-3 (rising powers).

Formula

Recursion for row polynomials defined in the comments: see A058402.

Extensions

Link and cross-references added by Wolfdieter Lang, Jul 31 2002

A342129 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - k*x + k*x^2).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, -1, 0, 1, 4, 6, 0, -1, 0, 1, 5, 12, 9, -4, 0, 0, 1, 6, 20, 32, 9, -8, 1, 0, 1, 7, 30, 75, 80, 0, -8, 1, 0, 1, 8, 42, 144, 275, 192, -27, 0, 0, 0, 1, 9, 56, 245, 684, 1000, 448, -81, 16, -1, 0, 1, 10, 72, 384, 1421, 3240, 3625, 1024, -162, 32, -1, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 28 2021

Keywords

Examples

			Square array begins:
  1,  1,  1, 1,   1,    1, ...
  0,  1,  2, 3,   4,    5, ...
  0,  0,  2, 6,  12,   20, ...
  0, -1,  0, 9,  32,   75, ...
  0, -1, -4, 9,  80,  275, ...
  0,  0, -8, 0, 192, 1000, ...
		

Crossrefs

Rows 0..1 give A000012, A001477.
Main diagonal gives (-1) * A109519(n+1).

Programs

  • Maple
    T:= (n, k)-> (<<0|1>, <-k|k>>^(n+1))[1, 2]:
    seq(seq(T(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Mar 01 2021
  • Mathematica
    T[n_, k_] := (-1)^n * Sum[If[k == j == 0, 1, (-k)^j] * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    T(n, k) = (-1)^n*sum(j=0, n\2, (-k)^(n-j)*binomial(n-j, j));
    
  • PARI
    T(n, k) = (-1)^n*sum(j=0, n, (-k)^j*binomial(j, n-j));
    
  • PARI
    T(n, k) = round(sqrt(k)^n*polchebyshev(n, 2, sqrt(k)/2));

Formula

T(0,k) = 1, T(1,k) = k and T(n,k) = k*(T(n-1,k) - T(n-2,k)) for n > 1.
T(n,k) = (-1)^n * Sum_{j=0..floor(n/2)} (-k)^(n-j) * binomial(n-j,j) = (-1)^n * Sum_{j=0..n} (-k)^j * binomial(j,n-j).
T(n,k) = sqrt(k)^n * S(n, sqrt(k)) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind.

A164608 Expansion of (1+4*x)/(1-8*x+8*x^2).

Original entry on oeis.org

1, 12, 88, 608, 4160, 28416, 194048, 1325056, 9048064, 61784064, 421888000, 2880831488, 19671547904, 134325731328, 917233467392, 6263261888512, 42768227368960, 292039723843584, 1994171971796992, 13617057983627264
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009

Keywords

Comments

Binomial transform of A054490. Fourth binomial transform of A164683. Inverse binomial transform of A164609.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+4*r)*(4+2*r)^n+(2-4*r)*(4-2*r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 22 2009
    
  • Mathematica
    LinearRecurrence[{8,-8}, {1,12,88}, 50] (* G. C. Greubel, Aug 10 2017 *)
  • PARI
    x='x+O('x^50); Vec((1+4*x)/(1-8*x+8*x^2)) \\ G. C. Greubel, Aug 10 2017

Formula

a(n) = 8*a(n-1) - 8*a(n-2) for n > 1; a(0) = 1, a(1) = 12.
a(n) = A057084(n) + 4*A057084(n-1).
a(n) = ((2+4*sqrt(2))*(4+2*sqrt(2))^n + (2-4*sqrt(2))*(4-2*sqrt(2))^n)/4.
E.g.f.: exp(4*x)*(cosh(2*sqrt(2)*x) + 2*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 10 2017

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 22 2009

A365823 Decimal expansion of 2*(2 + sqrt(2)).

Original entry on oeis.org

6, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2023

Keywords

Comments

The greater one of the solutions to x^2 - 8 * x + 8 = 0. The other solution is A157259 - 3 = 1.17157... . - Michal Paulovic, Nov 14 2023

Examples

			6.8284271247461900976033774484193961571393437507538961...
		

Crossrefs

Essentially the same as A157258, A090488, A086178 and A010466.

Programs

  • Maple
    evalf(4+sqrt(8), 130);  # Alois P. Heinz, Nov 13 2023
  • Mathematica
    First[RealDigits[2*(2 + Sqrt[2]), 10, 99]] (* Stefano Spezia, Nov 11 2023 *)
  • PARI
    \\ Works in v2.13 and higher; n = 100 decimal places
    my(n=100); digits(floor(10^n*(4+quadgen(32)))) \\ Michal Paulovic, Nov 14 2023

Formula

Equals 2*sqrt(2)*(1 + sqrt(2)) = 2*(2 + sqrt(2)). This is an integer in the quadratic number field Q(sqrt(2)).
Equals lim_{n->oo} A057084(n + 1)/A057084(n).
Equals continued fraction with periodic term [[6], [1, 4]]. - Peter Luschny, Nov 13 2023
Equals -3+A157258 = 1+A156035 = 2+A090488 = 3+A086178 = 4+A010466 = 6+A163960. - Alois P. Heinz, Nov 15 2023

A368155 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 3*x - 2*x^2.

Original entry on oeis.org

1, 1, 3, 2, 3, 7, 3, 9, 5, 15, 5, 15, 26, 3, 31, 8, 30, 43, 63, -15, 63, 13, 54, 104, 87, 144, -81, 127, 21, 99, 203, 273, 115, 333, -275, 255, 34, 177, 416, 549, 609, -9, 806, -789, 511, 55, 315, 811, 1263, 1146, 1260, -725, 2043, -2071, 1023, 89, 555, 1573
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2024

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
   1
   1    3
   2    3     7
   3    9     5    15
   5   15    26     3    31
   8   30    43    63   -15    63
  13   54   104    87   144   -81    127
  21   99   203   273   115   333   -275   255
Row 4 represents the polynomial p(4,x) = 3 + 9*x + 5*x^2 + 15*x^3, so (T(4,k)) = (3,9,5,15), k=0..3.
		

Crossrefs

Cf. A000045 (column 1); A000225, (p(n,n-1)); A001787 (row sums), (p(n,1)); A002605 (alternating row sums), (p(n,-1)); A004254, (p(n,-2)); A057084, (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150, A368151, A368152, A368153, A368154, A368156.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - 3x - 2x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 3*x, u = p(2,x), and v = 1 - 3*x - 2*x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 - 6*x + x^2), b = (1/2)*(3*x + 1 - 1/k), c = (1/2)*(2*x + 1 + 1/k).

A123357 Kekulé numbers for certain benzenoids (see the Cyvin-Gutman book for details).

Original entry on oeis.org

1, 6, 40, 272, 1856, 12672, 86528, 590848, 4034560, 27549696, 188121088, 1284571136, 8771600384, 59896233984, 408997068800, 2792806678528, 19070476877824, 130221361594368, 889207077732352, 6071885729103872, 41461429210972160, 283116347854946304, 1933239349151793152
Offset: 0

Views

Author

N. J. A. Sloane, Oct 10 2006

Keywords

Programs

  • Maple
    A123357 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,6]) ;
        else
            8*(procname(n-1)-procname(n-2)) ;
        end if
    end proc:
    seq( A123357(n),n=0..30) ; # R. J. Mathar, Jul 26 2019
  • Mathematica
    LinearRecurrence[{8, -8}, {1, 6}, 30] (* Jean-François Alcover, Apr 03 2020 *)

Formula

G.f.: -(2*x-1) / (8*x^2-8*x+1). - Colin Barker, Aug 29 2013
a(n) = A057084(n)-2*A057084(n-1). - R. J. Mathar, Jul 26 2019

A164588 a(n) = ((3 + sqrt(18))*(5 + sqrt(8))^n + (3 - sqrt(18))*(5 - sqrt(8))^n)/6.

Original entry on oeis.org

1, 9, 73, 577, 4529, 35481, 277817, 2174993, 17027041, 133295529, 1043495593, 8168931937, 63949894289, 500627099961, 3919122796697, 30680567267633, 240180585132481, 1880236207775049, 14719292130498313, 115228905772807297, 902061091509601649
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009

Keywords

Comments

Binomial transform of A057084. Second binomial transform of A002315. Third binomial transform of A108051 without initial 0. Fourth binomial transform of A096980. Fifth binomial transform of A094015.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((3+3*r)*(5+2*r)^n+(3-3*r)*(5-2*r)^n)/6: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 24 2009
    
  • Mathematica
    LinearRecurrence[{10,-17},{1,9},30] (* Harvey P. Dale, Sep 11 2016 *)
  • PARI
    x='x+O('x^50); Vec((1-x)/(1-10*x+17*x^2)) \\ G. C. Greubel, Aug 12 2017

Formula

a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 9.
G.f.: (1-x)/(1-10*x+17*x^2).
E.g.f.: (1/3)*exp(5*x)*(3*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 12 2017

Extensions

Extended by Klaus Brockhaus and R. J. Mathar Aug 24 2009

A167925 Triangle, T(n, k) = (sqrt(k+1))^(n-1)*ChebyshevU(n-1, sqrt(k+1)/2), read by rows.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 0, 2, 6, 12, -1, 0, 9, 32, 75, -1, -4, 9, 80, 275, 684, 0, -8, 0, 192, 1000, 3240, 8232, 1, -8, -27, 448, 3625, 15336, 47677, 122368, 1, 0, -81, 1024, 13125, 72576, 276115, 835584, 2158569, 0, 16, -162, 2304, 47500, 343440, 1599066, 5705728, 16953624, 44010000
Offset: 0

Views

Author

Roger L. Bagula, Nov 15 2009

Keywords

Examples

			Triangle begins as:
   0;
   1,  1;
   1,  2,   3;
   0,  2,   6,   12;
  -1,  0,   9,   32,    75;
  -1, -4,   9,   80,   275,   684;
   0, -8,   0,  192,  1000,  3240,   8232;
   1, -8, -27,  448,  3625, 15336,  47677, 122368;
   1,  0, -81, 1024, 13125, 72576, 276115, 835584, 2158569;
		

Crossrefs

Programs

  • Magma
    A167925:= func< n,k | Round((Sqrt(k+1))^(n-1)*Evaluate(ChebyshevSecond(n), Sqrt(k+1)/2)) >;
    [A167925(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 11 2023
    
  • Mathematica
    (* First program *)
    m[k_]= {{k,1}, {-1,1}};
    v[0, k_]:= {0,1};
    v[n_, k_]:= v[n, k]= m[k].v[n-1,k];
    T[n_, k_]:= v[n, k][[1]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
    (* Second program *)
    A167925[n_, k_]:= (Sqrt[k+1])^(n-1)*ChebyshevU[n-1, Sqrt[k+1]/2];
    Table[A167925[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 11 2023 *)
  • SageMath
    def A167925(n,k): return (sqrt(k+1))^(n-1)*chebyshev_U(n-1, sqrt(k+1)/2)
    flatten([[A167925(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 11 2023

Formula

T(n, k) = (-1)^(n+1) * [x^(n-1)]( 1/(1 + (k+1)*x + (k+1)*x^2) ). - Francesco Daddi, Aug 04 2011 (modified by G. C. Greubel, Sep 11 2023)
From G. C. Greubel, Sep 11 2023: (Start)
T(n, k) = (sqrt(k+1))^(n-1)*ChebyshevU(n-1, sqrt(k+1)/2).
T(n, 0) = A128834(n).
T(n, 1) = A009545(n) = A099087(n-1).
T(n, 2) = A057083(n-1).
T(n, 3) = A001787(n).
T(n, 4) = A030191(n-1).
T(n, 5) = A030192(n-1).
T(n, 6) = A030240(n-1).
T(n, 7) = A057084(n-1).
T(n, 8) = A057085(n).
T(n, 9) = A057086(n-1).
T(n, 10) = A190871(n).
T(n, 11) = A190873(n). (End)

Extensions

Edited by G. C. Greubel, Sep 11 2023

A114479 Kekulé numbers for certain benzenoids.

Original entry on oeis.org

3, 20, 136, 928, 6336, 43264, 295424, 2017280, 13774848, 94060544, 642285568, 4385800192, 29948116992, 204498534400, 1396403339264, 9535238438912, 65110680797184, 444603538866176, 3035942864551936, 20730714605486080
Offset: 1

Views

Author

Emeric Deutsch, Nov 30 2005

Keywords

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 205).

Programs

  • Maple
    a:=((4+sqrt(8))^(n+1)+(4-sqrt(8))^(n+1))/16: seq(expand(a(n)),n=1..23);

Formula

a(n) = ((4+sqrt(8))^(n+1) + (4-sqrt(8))^(n+1))/16.
a(n) = 8*a(n-1) - 8*a(n-2). - Colin Barker, Aug 30 2013
G.f.: -x*(4*x-3) / (8*x^2 - 8*x + 1). - Colin Barker, Aug 30 2013
a(n)= 3*A057084(n-1) - 4*A057084(n-2). - R. J. Mathar, Aug 30 2013
a(n) = A007052(n+1)*2^(n-1). - R. J. Mathar, Jul 24 2022

A201972 Triangle T(n,k), read by rows, given by (2,1/2,-1/2,0,0,0,0,0,0,0,...) DELTA (2,-1/2,1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 2, 5, 8, 3, 12, 28, 20, 4, 29, 88, 94, 40, 5, 70, 262, 372, 244, 70, 6, 169, 752, 1333, 1184, 539, 112, 7, 408, 2104, 4472, 5016, 3144, 1064, 168, 8, 985, 5776, 14316, 19408, 15526, 7344, 1932, 240, 9
Offset: 0

Views

Author

Philippe Deléham, Dec 07 2011

Keywords

Comments

Diagonal sums: A201967(n), row sums: A000302(n) (powers of 4).

Examples

			Triangle begins:
    1;
    2,   2;
    5,   8,    3;
   12,  28,   20,    4;
   29,  88,   94,   40,   5;
   70, 262,  372,  244,  70,   6;
  169, 752, 1333, 1184, 539, 112, 7;
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=0 and n=0 then 1
        elif k<0 or  k>n  then 0
        else 2*T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 17 2020
  • Mathematica
    With[{m = 8}, CoefficientList[CoefficientList[Series[1/(1-2*(y+1)*x+(y+1)*(y-1)*x^2), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
  • PARI
    T(n,k) = if(nMichel Marcus, Feb 17 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0 and n==0): return 1
        else: return 2*T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2)
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 17 2020

Formula

G.f.: 1/(1-2*(y+1)*x+(y+1)*(y-1)*x^2).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000129(n+1), A000302(n), A138395(n), A057084(n) for x = -1, 0, 1, 2, 3, respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000027(n), A000302(n), A090018(n), A057091(n) for x = 0, 1, 2, 3, respectively.
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2) with T(0,0) = 1, T(n,k) = 0 if k < 0 or if n < k.

Extensions

a(40) corrected by Georg Fischer, Feb 17 2020
Previous Showing 11-20 of 21 results. Next