cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A086346 On a 3 X 3 board, the number of n-move paths for a chess king ending in a given corner square.

Original entry on oeis.org

1, 3, 18, 80, 400, 1904, 9248, 44544, 215296, 1039104, 5018112, 24227840, 116985856, 564850688, 2727354368, 13168803840, 63584665600, 307013812224, 1482394042368, 7157631156224, 34560101318656, 166870928850944, 805724122775552, 3890380202311680, 18784417308737536, 90699190027419648
Offset: 0

Views

Author

Zak Seidov, Jul 17 2003

Keywords

Comments

From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move paths of a chess king on a 3 X 3 board that end or start in a given corner square m (m = 1, 3, 7, 9). To determine the a(n) we can either sum the components of the column vector A^n[k,m], with A the adjacency matrix of the king's graph, or we can sum the components of the row vector A^n[m,k], see the Maple program.
Inverse binomial transform of A079291 (without the leading 0).
(End)
From R. J. Mathar, Oct 12 2010: (Start)
The row n=3 of an array counting king walks on an n X n board with k steps, starting from a corner:
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, ...;
1, 3, 18, 80, 400, 1904, 9248, 44544, 215296, 1039104, 5018112, ...;
1, 3, 18, 105, 615, 3600, 21075, 123375, 722250, 4228125, 24751875, ...;
1, 3, 18, 105, 684, 4359, 28278, 182349, 1179792, 7622667, 49283802, ...;
1, 3, 18, 105, 684, 4550, 30807, 209867, 1434279, 9815190, 67209723, ...;
1, 3, 18, 105, 684, 4550, 31340, 218056, 1533712, 10829360, 76720288, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1559835, 11177190, 80573373, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11259785, 81765550, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82025163, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82059768, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82059768, ...;
The partial sums along the rows are documented in A123109 (king walks with between 1 and k steps). (End)

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984. [From Johannes W. Meijer, Aug 01 2010]

Crossrefs

Programs

  • Magma
    [2^(n-3)*(Evaluate(DicksonFirst(n+2,-1), 2) +2*(-1)^n): n in [0..30]]; // G. C. Greubel, Aug 18 2022
    
  • Maple
    with(LinearAlgebra):
    nmax:=19; m:=1;
    A[5]:= [1, 1, 1, 1, 0, 1, 1, 1, 1]:
    A:=Matrix([[0, 1, 0, 1, 1, 0, 0, 0, 0], [1, 0, 1, 1, 1, 1, 0, 0, 0], [0, 1, 0, 0, 1, 1, 0, 0, 0], [1, 1, 0, 0, 1, 0, 1, 1, 0], A[5], [0, 1, 1, 0, 1, 0, 0, 1, 1], [0, 0, 0, 1, 1, 0, 0, 1, 0], [0, 0, 0, 1, 1, 1, 1, 0, 1], [0, 0, 0, 0, 1, 1, 0, 1, 0]]):
    for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 01 2010
  • Mathematica
    Table[(1/32)(2(-2)^(n+2)+(2+Sqrt[8])^(n+2)+(2-Sqrt[8])^(n+2)), {n, 0, 19}] // FullSimplify
    LinearRecurrence[{2,12,8}, {1,3,18}, 31] (* G. C. Greubel, Aug 18 2022 *)
  • PARI
    Vec((1+x)/((1+2*x)*(1-4*x-4*x^2))+O(x^30)) \\ Joerg Arndt, Jan 29 2024
  • SageMath
    [2^(n-3)*(lucas_number2(n+2,2,-1) +2*(-1)^n) for n in (0..30)] # G. C. Greubel, Aug 18 2022
    

Formula

a(n) = (1/32)*(2*(-2)^(n+2) + (2+sqrt(8))^(n+2) + (2-sqrt(8))^(n+2)).
From R. J. Mathar, Jul 22 2010: (Start)
a(n) = 2*a(n-1) + 12*a(n-2) + 8*a(n-3).
G.f.: (1+x) / ( (1+2*x)*(1-4*x-4*x^2) ).
a(n) = (2*A057087(n-1) + 3*A057087(n) + (-2)^n)/4. (End)
Limit_{k->oo} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2). - Johannes W. Meijer, Aug 01 2010
a(n) = A110048(n) + A110048(n-1). - R. J. Mathar, Mar 08 2021
a(n) = 2^(n-3)*(A002203(n+2) + 2*(-1)^n). - G. C. Greubel, Aug 18 2022

Extensions

Offset changed and edited by Johannes W. Meijer, Jul 15 2010

A180226 a(n) = 4*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 1, 4, 26, 144, 836, 4784, 27496, 157824, 906256, 5203264, 29875616, 171535104, 984896576, 5654937344, 32468715136, 186424233984, 1070384087296, 6145778689024, 35286955629056, 202605609406464, 1163291993916416, 6679224069730304, 38349816218085376
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + 10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
  • Mathematica
    Join[{a=0,b=1},Table[c=4*b+10*a;a=b;b=c,{n,100}]]
    LinearRecurrence[{4,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x^2/(1-4*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
    

Formula

a(n) = ((2+sqrt(14))^(n-1) - (2-sqrt(14))^(n-1))/(2*sqrt(14)). - Rolf Pleisch, May 14 2011
G.f.: x^2/(1-4*x-10*x^2).

A057093 Scaled Chebyshev U-polynomials evaluated at i*sqrt(10)/2. Generalized Fibonacci sequence.

Original entry on oeis.org

1, 10, 110, 1200, 13100, 143000, 1561000, 17040000, 186010000, 2030500000, 22165100000, 241956000000, 2641211000000, 28831670000000, 314728810000000, 3435604800000000, 37503336100000000, 409389409000000000, 4468927451000000000, 48783168600000000000
Offset: 0

Views

Author

Wolfdieter Lang, Aug 11 2000

Keywords

Comments

This is the m=10 member of the m-family of sequences a(m,n)= S(n,i*sqrt(m))*(-i*sqrt(m))^n, with S(n,x) given in Formula and g.f.: 1/(1-m*x-m*x^2). The instances m=1..9 are A000045 (Fibonacci), A002605, A030195, A057087, A057088, A057089, A057090, A057091, A057092.
With the roots rp(m) := (m+sqrt(m*(m+4)))/2 and rm(m) := (m-sqrt(m*(m+4)))/2 the Binet form of these m-sequences is a(n,m)= (rp(m)^(n+1)-rm(m)^(n+1))/(rp(m)-rm(m)).
a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^10, 1->(1^10)0, starting from 0. The number of 1's and 0's of this word is 10*a(n-1) and 10*a(n-2), resp.

Programs

Formula

a(n) = 10*(a(n-1) + a(n-2)), a(-1)=0, a(0)=1.
a(n) = S(n, i*sqrt(10))*(-i*sqrt(10))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1 - 10*x - 10*x^2).
a(n) = Sum_{k=0..n} 9^k*A063967(n,k). - Philippe Deléham, Nov 03 2006

Extensions

Extended by T. D. Noe, May 23 2011

A135030 Generalized Fibonacci numbers: a(n) = 6*a(n-1) + 2*a(n-2).

Original entry on oeis.org

0, 1, 6, 38, 240, 1516, 9576, 60488, 382080, 2413456, 15244896, 96296288, 608267520, 3842197696, 24269721216, 153302722688, 968355778560, 6116740116736, 38637152257536, 244056393778688, 1541612667187200
Offset: 0

Views

Author

Rolf Pleisch, Feb 10 2008, Feb 14 2008

Keywords

Comments

For n>0, a(n) equals the number of words of length n-1 over {0,1,...,7} in which 0 and 1 avoid runs of odd lengths. - Milan Janjic, Jan 08 2017

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 6*Self(n-1) + 2*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Sep 18 2016
    
  • Maple
    A:= gfun:-rectoproc({a(0) = 0, a(1) = 1, a(n) = 2*(3*a(n-1) + a(n-2))},a(n),remember):
    seq(A(n),n=1..30); # Robert Israel, Sep 16 2014
  • Mathematica
    Join[{a=0,b=1},Table[c=6*b+2*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    LinearRecurrence[{6,2},{0,1},30] (* or *) CoefficientList[Series[ -(x/(2x^2+6x-1)),{x,0,30}],x] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    a(n)=([0,1; 2,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    [lucas_number1(n,6,-2) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(0) = 0; a(1) = 1; a(n) = 2*(3*a(n-1) + a(n-2)).
a(n) = 1/(2*sqrt(11))*( (3 + sqrt(11))^n - (3 - sqrt(11))^n ).
G.f.: x/(1 - 6*x - 2*x^2). - Harvey P. Dale, Jun 20 2011
a(n+1) = Sum_{k=0..n} A099097(n,k)*2^k. - Philippe Deléham, Sep 16 2014
E.g.f.: (1/sqrt(11))*exp(3*x)*sinh(sqrt(11)*x). - G. C. Greubel, Sep 17 2016

Extensions

More terms from Joshua Zucker, Feb 23 2008

A086348 On a 3 X 3 board, number of n-move routes of chess king ending in the central square.

Original entry on oeis.org

1, 8, 32, 168, 784, 3840, 18432, 89216, 430336, 2078720, 10035200, 48457728, 233967616, 1129709568, 5454692352, 26337640448, 127169265664, 614027755520, 2964787822592, 14315262836736
Offset: 0

Views

Author

Zak Seidov, Jul 17 2003

Keywords

Comments

From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move paths of a chess king on a 3 X 3 board that end or start in the central square m (m = 5).
Inverse binomial transform of A090390 (without the first leading 1).
(End)
From R. J. Mathar, Oct 12 2010: (Start)
The row n=3 of an array T(n,k) counting king walks on an n X n board starting on a square on the diagonal next to a corner:
1,8,32,168,784,3840,18432,89216,430336,2078720,10035200,48457728,233967616,
1,8,47,275,1610,9425,55175,323000,1890875,11069375,64801250,379353125,
1,8,47,318,2013,13140,84555,547722,3537081,22874400,147831399,955690326,
1,8,47,318,2134,14539,99267,679189,4650100,31848677,218164072,1494530576,
1,8,47,318,2134,14880,103920,733712,5187856,36796224,261164848,1855327584,
1,8,47,318,2134,14880,104885,748845,5382180,38880243,281743740,2045995632,
1,8,47,318,2134,14880,104885,751590,5430735,39556080,289541500,2127935700,
1,8,47,318,2134,14880,104885,751590,5438580,39710495,291852880,2156410817,
1,8,47,318,2134,14880,104885,751590,5438580,39733008,292340803,2164218694,
1,8,47,318,2134,14880,104885,751590,5438580,39733008,292405638,2165752797, (End)

Crossrefs

Programs

  • Maple
    with(LinearAlgebra): nmax:=19; m:=5; A[5]:= [1,1,1,1,0,1,1,1,1]: A:=Matrix([[0,1,0,1,1,0,0,0,0],[1,0,1,1,1,1,0,0,0],[0,1,0,0,1,1,0,0,0],[1,1,0,0,1,0,1,1,0],A[5],[0,1,1,0,1,0,0,1,1],[0,0,0,1,1,0,0,1,0],[0,0,0,1,1,1,1,0,1],[0,0,0,0,1,1,0,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 01 2010
  • Mathematica
    Table[(1/16)(4(-2)^(n+1)+(2+Sqrt[8])^(n+2)+(2-Sqrt[8])^(n+2)), {n, 0, 19}]

Formula

a(n) = (1/16)(4(-2)^(n+1) + (2+sqrt(8))^(n+2) + (2-sqrt(8))^(n+2)).
From Johannes W. Meijer, Aug 01 2010: (Start)
G.f.: ( 1+6*x+4*x^2 ) / ( (2*x+1)*(-4*x^2-4*x+1) ).
a(n) = 2*a(n-1) + 12*a(n-2) + 8*a(n-3) with a(0)=1, a(1)=8 and a(2)=32.
Lim_{k->infinity} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2). (End)
2*a(n) = 3*A057087(n) + 2*A057087(n-1) - (-2)^n. - R. J. Mathar, May 21 2019

Extensions

Offset changed and edited by Johannes W. Meijer, Jul 15 2010

A094013 Expansion of (1-4*x)/(1-4*x-4*x^2).

Original entry on oeis.org

1, 0, 4, 16, 80, 384, 1856, 8960, 43264, 208896, 1008640, 4870144, 23515136, 113541120, 548225024, 2647064576, 12781158400, 61712891904, 297976201216, 1438756372480, 6946930294784, 33542746669056, 161958707855360
Offset: 0

Views

Author

Paul Barry, Apr 21 2004

Keywords

Comments

Inverse binomial transform of A000129(2n-1). a(n+2)/4 = A057087(n).
a(n) is the irrational part of circle radii in nested circles and squares inspired by Vitruvian Man, starting with a square whose sides are of length 4 (in some units). The radius of the circle is an integer in the real quadratic number field Q(sqrt(2)), namely R(n) = A(n-1) + B(m)*sqrt(2) with A(-1)=1, for n >= 1, A(n-1) = A170931(n-1)*-1^(n-1); and B(n) = A094013(n)*-1^n. See illustrations in the links. - Kival Ngaokrajang, Feb 15 2015

Crossrefs

Programs

  • Magma
    [n le 2 select 2-n else 4*(Self(n-1) + Self(n-2)): n in [1..41]]; // G. C. Greubel, Dec 04 2021
    
  • Mathematica
    CoefficientList[Series[(1-4x)/(1-4x-4x^2),{x,0,40}],x] (* or *) LinearRecurrence[{4,4},{1,0},40] (* Harvey P. Dale, May 21 2012 *)
    Table[2^n*Fibonacci[n-1, 2], {n, 0, 40}] (* G. C. Greubel, Dec 04 2021 *)
  • PARI
    Vec((1-4*x)/(1-4*x-4*x^2) + O(x^30)) \\ Michel Marcus, Feb 15 2015
    
  • Sage
    [2^n*lucas_number1(n-1, 2, -1) for n in (0..40)] # G. C. Greubel, Dec 04 2021

Formula

a(n) = (2 + 2*sqrt(2))^n*(1/2 - sqrt(2)/4) + (2 - 2*sqrt(2))^n*(1/2 + sqrt(2)/4).
a(n) = 4*a(n-1) + 4*a(n-2); a(0)=1, a(1)=0. - Philippe Deléham, Nov 03 2008
a(n) = A057087(n) - 4*A057087(n-1). - R. J. Mathar, Jan 15 2013
From G. C. Greubel, Dec 04 2021: (Start)
a(n) = 2^n * A000129(n-1).
E.g.f.: exp(2*x)*( cosh(2*sqrt(2)*x) - (1/sqrt(2))*sinh(2*sqrt(2)*x) ). (End)

A129267 Triangle with T(n,k) = T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k) and T(0,0)=1 .

Original entry on oeis.org

1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -1, -3, -2, 1, 1, 0, -2, -5, -3, 1, 1, 1, 2, -2, -7, -4, 1, 1, 1, 5, 7, -1, -9, -5, 1, 1, 0, 3, 12, 15, 1, -11, -6, 1, 1, -1, -3, 3, 21, 26, 4, -13, -7, 1, 1, -1, -7, -15, -3, 31, 40, 8, -15, -8, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Jun 08 2007

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows given by [1,-1,1,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,...] where DELTA is the operator defined in A084938 . Riordan array (1/(1-x+x^2),(x*(1-x))/(1-x+x^2)); inverse array is (1/(1+x),(x/(1+x))*c(x/(1+x))) where c(x)is g.f. of A000108 .
Row sums are ( with the addition of a first row {0}): 0, 1, 2, 2, 0, -4, -8, -8, 0, 16, 32,... (see A009545). - Roger L. Bagula, Nov 15 2009

Examples

			Triangle begins:
   1;
   1,  1;
   0,  1,   1;
  -1, -1,   1,  1;
  -1, -3,  -2,  1,  1;
   0, -2,  -5, -3,  1,   1;
   1,  2,  -2, -7, -4,   1,   1;
   1,  5,   7, -1, -9,  -5,   1,   1;
   0,  3,  12, 15,  1, -11,  -6,   1,  1;
  -1, -3,   3, 21, 26,   4, -13,  -7,  1, 1;
  -1, -7, -15, -3, 31,  40,   8, -15, -8, 1, 1;
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or  k>n  then 0
        elif n=0 and k=0 then 1
        else T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 14 2020
  • Mathematica
    m = {{a, 1}, {-1, 1}}; v[0]:= {0, 1}; v[n_]:= v[n] = m.v[n-1]; Table[CoefficientList[v[n][[1]], a], {n, 0, 10}]//Flatten (* Roger L. Bagula, Nov 15 2009 *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0 && k==0, 1, T[n-1, k-1] + T[n-1, k] - T[n-2, k-1] - T[n-2, k] ]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 14 2020 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return 1
        else: return T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 14 2020

Formula

Sum{k=0..n} T(n,k)*x^k = { (-1)^n*A057093(n), (-1)^n*A057092(n), (-1)^n*A057091(n), (-1)^n*A057090(n), (-1)^n*A057089(n), (-1)^n*A057088(n), (-1)^n*A057087(n), (-1)^n*A030195(n+1), (-1)^n*A002605(n), A039834(n+1), A000007(n), A010892(n), A099087(n), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n), A057086(n) } for x=-11, -10, ..., 8, 9, respectively .
Sum{k=0..n} T(n,k)*A000045(k) = A100334(n).
Sum{k=0..floor(n/2)} T(n-k,k) = A050935(n+2).
T(n,k)= Sum{j>=0} A109466(n,j)*binomial(j,k).
T(n,k) = (-1)^(n-k)*A199324(n,k) = (-1)^k*A202551(n,k) = A202503(n,n-k). - Philippe Deléham, Mar 26 2013
G.f.: 1/(1-x*y+x^2*y-x+x^2). - R. J. Mathar, Aug 11 2015

Extensions

Riordan array definition corrected by Ralf Stephan, Jan 02 2014

A180250 a(n) = 5*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 1, 5, 35, 225, 1475, 9625, 62875, 410625, 2681875, 17515625, 114396875, 747140625, 4879671875, 31869765625, 208145546875, 1359425390625, 8878582421875, 57987166015625, 378721654296875, 2473479931640625, 16154616201171875, 105507880322265625
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 5*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
    
  • Mathematica
    Join[{a=0,b=1},Table[c=5*b+10*a;a=b;b=c,{n,100}]]
    LinearRecurrence[{5,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
  • PARI
    a(n)=([0,1;10,5]^(n-1))[1,2] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x^2/(1-5*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
    
  • SageMath
    A180250= BinaryRecurrenceSequence(5,10,0,1)
    [A180250(n-1) for n in range(1,41)] # G. C. Greubel, Jul 21 2023

Formula

a(n) = ((5+sqrt(65))^(n-1) - (5-sqrt(65))^(n-1))/(2^(n-1)*sqrt(65)). - Rolf Pleisch, May 14 2011
G.f.: x^2/(1-5*x-10*x^2).
a(n) = (i*sqrt(10))^(n-1) * ChebyshevU(n-1, -i*sqrt(5/8)). - G. C. Greubel, Jul 21 2023

A015551 Expansion of x/(1 - 6*x - 5*x^2).

Original entry on oeis.org

0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636
Offset: 0

Views

Author

Keywords

Comments

Let the generator matrix for the ternary Golay G_12 code be [I|B], where the elements of B are taken from the set {0,1,2}. Then a(n)=(B^n)1,2 for instance. - _Paul Barry, Feb 13 2004
Pisano period lengths: 1, 2, 4, 4, 1, 4, 42, 8, 12, 2, 10, 4, 12, 42, 4, 16, 96, 12, 360, 4, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    Join[{a=0,b=1},Table[c=6*b+5*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    CoefficientList[Series[x/(1-6x-5x^2),{x,0,20}],x] (* or *) LinearRecurrence[ {6,5},{0,1},30] (* Harvey P. Dale, Oct 30 2017 *)
  • PARI
    a(n)=([0,1; 5,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    [lucas_number1(n,6,-5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 6*a(n-1) + 5*a(n-2).
a(n) = sqrt(14)*(3+sqrt(14))^n/28 - sqrt(14)*(3-sqrt(14))^n/28. - Paul Barry, Feb 13 2004

A108051 a(n+1) = 4*(a(n)+a(n-1)) for n>1, a(1)=1, a(2)=6.

Original entry on oeis.org

0, 1, 6, 28, 136, 656, 3168, 15296, 73856, 356608, 1721856, 8313856, 40142848, 193826816, 935878656, 4518821888, 21818802176, 105350496256, 508677193728, 2456110759936, 11859151814656, 57261050298368, 276480808452096
Offset: 0

Views

Author

Creighton Dement, Jun 01 2005

Keywords

Comments

Let (a_n) be the sequence and (a_(n+1)) the sequence beginning at 1. Let B and iB be the binomial and inverse binomial transforms, respectively. Then B((a_n)) = A001108(n) (a(n)-th triangular number is a square); B((a_(n+1))) = A002315(n) (NSW Numbers); iB((a_(n+1))) = A096980(n). Note: a 2nd sequence generated by the same floretion is A057087 (Scaled Chebyshev U-polynomials evaluated at i. Generalized Fibonacci sequence.). As is often the case with two sequences corresponding to a single floretion, both satisfy the same recurrence relation.
Floretion Algebra Multiplication Program, FAMP Code: (a_n) = 2ibasekseq[A*B] (with initial term zero), (a_(n+1)) = 1tesseq[A*B], A = + .5'i - .5'j + .5'k + .5i' - .5j' + .5k' - .5'ij' - .5'ik' - .5'ji' - .5'ki'; B = - .5'i + .5'j + .5'k - .5i' + .5j' + .5k' - .5'ik' - .5'jk' - .5'ki' - .5'kj'

Crossrefs

Programs

  • Magma
    I:=[0, 1, 6]; [n le 3 select I[n] else 4*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 26 2012
  • Mathematica
    CoefficientList[Series[x*(1+2*x)/(1-4*x-4*x^2),{x,0,40}],x] (* Vincenzo Librandi, Jun 26 2012 *)

Formula

a(n+1) = -(1/2)*(2-2*2^(1/2))^n*(-1+2^(1/2))-(1/2)*(2+2*2^(1/2))^n(-1-2^(1/2)); G.f.: x*(1+2*x)/(1-4*x-4*x^2).
a(n) = sum{k=0..n, (-1)^k*C(n-1, k)*(Pell(2n-2k)-Pell(2n-2k-1))}, n>0, where Pell(n) = A000129(n). - Paul Barry, Jun 07 2005
a(n+1) = ((3+sqrt18)(2+sqrt8)^n+(3-sqrt18)(2-sqrt8)^n)/6. - Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009, index corrected Jul 11 2012
a(n) = 2^(n-1) * A001333(n), n>0. - Ralf Stephan, Dec 02 2010
a(n) = A057087(n-1) + 2*A057087(n-2). - R. J. Mathar, Jul 11 2012
Previous Showing 11-20 of 37 results. Next