cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A189976 a(n) is the number of incongruent two-color bracelets of n beads, 8 of them black (A005514), having a diameter of symmetry.

Original entry on oeis.org

1, 1, 5, 5, 15, 15, 35, 35, 70, 70, 126, 126, 210, 210, 330, 330, 495, 495, 715, 715, 1001, 1001, 1365, 1365, 1820, 1820, 2380, 2380, 3060, 3060, 3876, 3876, 4845, 4845, 5985, 5985, 7315, 7315, 8855, 8855, 10626
Offset: 8

Views

Author

Vladimir Shevelev, May 03 2011

Keywords

Comments

For n >= 9, a(n-1) is the number of incongruent two-color bracelets of n beads, 9 from them are black (A032281), having a diameter of symmetry.

Crossrefs

Programs

Formula

a(n) = C(floor(n/2),4).
a(n+5) = A194005(n,n-4). [Johannes W. Meijer, Aug 15 2011]
G.f.: -x^8/((x-1)^5*(x+1)^4). [Colin Barker, Feb 06 2013]

Extensions

Data added and link corrected by Johannes W. Meijer, Aug 15 2011

A190717 Triplicated tetrahedral numbers A000292.

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 10, 10, 10, 20, 20, 20, 35, 35, 35, 56, 56, 56, 84, 84, 84, 120, 120, 120, 165, 165, 165, 220, 220, 220, 286, 286, 286, 364, 364, 364, 455, 455, 455, 560, 560, 560, 680, 680, 680, 816, 816, 816, 969, 969, 969
Offset: 0

Views

Author

Johannes W. Meijer, May 18 2011

Keywords

Comments

The Ca1 and Ze3 triangle sums, see A180662 for their definitions, of the triangle A159797 are linear sums of shifted versions of the triplicated tetrahedral numbers, e.g. Ca1(n) = a(n-1) + a(n-2) + 2*a(n-3) + a(n-6).
The Ca1, Ca2, Ze3 and Ze4 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above.

Crossrefs

Cf. A000292 (tetrahedral numbers), A058187 (duplicated), this sequence (triplicated), A190718 (quadruplicated), A049347, A144677.

Programs

  • Maple
    A190717:= proc(n) option remember; A190717(n):= binomial(floor(n/3)+3,3) end: seq(A190717(n),n=0..50);
  • Mathematica
    LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{1,1,1,4,4,4,10,10,10,20},60] (* Harvey P. Dale, Mar 09 2018 *)

Formula

a(n) = binomial(floor(n/3)+3,3).
a(n) + a(n-1) + a(n-2) = A144677(n).
a(n) = Sum_{k=0..n} (A144677(n-k)*A049347(k)).
G.f.: 1/((x-1)^4*(x^2+x+1)^3).
Sum_{n>=0} 1/a(n) = 9/2. - Amiram Eldar, Aug 18 2022

A190718 Quadruplicated tetrahedral numbers A000292.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 4, 4, 10, 10, 10, 10, 20, 20, 20, 20, 35, 35, 35, 35, 56, 56, 56, 56, 84, 84, 84, 84, 120, 120, 120, 120, 165, 165, 165, 165, 220, 220, 220, 220, 286, 286, 286, 286, 364, 364, 364, 364, 455, 455, 455, 455
Offset: 0

Views

Author

Johannes W. Meijer, May 18 2011

Keywords

Comments

The Gi1 triangle sums, for the definitions of these and other triangle sums see A180662, of the triangle A159797 are linear sums of shifted versions of the quadruplicated tetrahedral numbers A000292, i.e., Gi1(n) = a(n-1) + a(n-2) + a(n-3) + 2*a(n-4) + a(n-8).
The Gi1 and Gi2 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above.

Crossrefs

Cf. A000292 (tetrahedral numbers), A058187 (duplicated), A190717 (triplicated).

Programs

  • Maple
    A190718:= proc(n) binomial(floor(n/4)+3,3) end:
    seq(A190718(n),n=0..52);
  • Mathematica
    LinearRecurrence[{1,0,0,3,-3,0,0,-3,3,0,0,1,-1},{1,1,1,1,4,4,4,4,10,10,10,10,20},60] (* Harvey P. Dale, Oct 20 2012 *)

Formula

a(n) = binomial(floor(n/4)+3,3).
a(n-3) + a(n-2) + a(n-1) + a(n) = A144678(n).
a(n) = +a(n-1) +3*a(n-4) -3*a(n-5) -3*a(n-8) +3*a(n-9) +a(n-12) -a(n-13).
G.f.: 1 / ( (1+x)^3*(1+x^2)^3*(x-1)^4 ).
Sum_{n>=0} 1/a(n) = 6. - Amiram Eldar, Aug 18 2022

A023857 a(n) = 1*(n+3-1) + 2*(n+3-2) + .... + k*(n+3-k), where k=floor((n+1)/2).

Original entry on oeis.org

3, 4, 13, 16, 34, 40, 70, 80, 125, 140, 203, 224, 308, 336, 444, 480, 615, 660, 825, 880, 1078, 1144, 1378, 1456, 1729, 1820, 2135, 2240, 2600, 2720, 3128, 3264, 3723, 3876, 4389, 4560, 5130, 5320, 5950, 6160, 6853, 7084, 7843, 8096, 8924, 9200, 10100, 10400, 11375, 11700
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..60], n-> (4*n^3 +27*n^2 +50*n +21 -3*(n^2+6*n+7)*(-1)^n)/48) # G. C. Greubel, Jun 12 2019
  • Magma
    [(4*n^3 +27*n^2 +50*n +21 -3*(n^2+6*n+7)*(-1)^n)/48: n in [1..60]]; // G. C. Greubel, Jun 12 2019
    
  • Maple
    seq(sum(i*(n-i+3), i=1..ceil(n/2)), n=1..60); # Wesley Ivan Hurt, Sep 20 2013
  • Mathematica
    Table[-Ceiling[n/2]*(Ceiling[n/2]+1)*(2*Ceiling[n/2]-3n-8)/6, {n,60}] (* Wesley Ivan Hurt, Sep 20 2013 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{3,4,13,16,34,40,70},60] (* Harvey P. Dale, Feb 13 2018 *)
  • PARI
    a(n) = (4*n^3 +27*n^2 +50*n +21 -3*(n^2+6*n+7)*(-1)^n)/48; \\ G. C. Greubel, Jun 12 2019
    
  • Sage
    [(4*n^3 +27*n^2 +50*n +21 -3*(n^2+6*n+7)*(-1)^n)/48 for n in (1..60)] # G. C. Greubel, Jun 12 2019
    

Formula

a(n) = Sum_{i=1..ceiling(n/2)} i*(n-i+3) = -ceiling(n/2)*(ceiling(n/2)+1)*(2*ceiling(n/2) - 3*n - 8)/6. - Wesley Ivan Hurt, Sep 20 2013
G.f. x*(3+x) / ( (1+x)^3*(1-x)^4 ). - R. J. Mathar, Sep 25 2013
a(n) = 3*A058187(n-1) + A058187(n-2). - R. J. Mathar, Sep 25 2013
a(n) = (4*n^3 + 27*n^2 + 50*n + 21 - 3*(n^2 + 6*n + 7)*(-1)^n)/48. - Luce ETIENNE, Nov 21 2014
E.g.f.: (x*(51 + 18*x + 2*x^2)*cosh(x) + (21 + 30*x + 21*x^2 + 2*x^3)*sinh(x))/24. - G. C. Greubel, Jun 12 2019

Extensions

Title simplified by Sean A. Irvine, Jun 12 2019

A024854 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = (natural numbers), t = (natural numbers >= 3).

Original entry on oeis.org

4, 5, 16, 19, 40, 46, 80, 90, 140, 155, 224, 245, 336, 364, 480, 516, 660, 705, 880, 935, 1144, 1210, 1456, 1534, 1820, 1911, 2240, 2345, 2720, 2840, 3264, 3400, 3876, 4029, 4560, 4731, 5320, 5510, 6160, 6370, 7084, 7315, 8096, 8349, 9200, 9476, 10400, 10700, 11700
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(4*n^3+21*n^2+14*n-9+3*(n^2+6*n+3)*(-1)^n)/48: n in [2..60]]; // Vincenzo Librandi, Oct 31 2014
    
  • Maple
    seq(sum(i*(k-i+3), i=1..floor(k/2)), k=2..70); # Wesley Ivan Hurt, Sep 20 2013
  • Mathematica
    Table[-Floor[n/2] * (Floor[n/2] + 1) * (2 * Floor[n/2] - 3n - 8)/6, {n, 2, 100}] (* Wesley Ivan Hurt, Sep 20 2013 *)
    CoefficientList[Series[- (- 4 - x + x^2)/((1 + x)^3 (x - 1)^4), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 31 2014 *)
  • SageMath
    [(4*n^3+21*n^2+14*n-9+3*(n^2+6*n+3)*(-1)^n)/48 for n in (2..60)] # G. C. Greubel, Jul 13 2022

Formula

a(n) = Sum_{i=1..floor(n/2)} i*(n-i+3) = -floor(n/2)*(floor(n/2)+1)*(2*floor(n/2)-3n-8)/6. - Wesley Ivan Hurt, Sep 20 2013
G.f. x^2*(4 + x - x^2) / ( (1+x)^3*(1-x)^4 ). - R. J. Mathar, Sep 25 2013
a(n) = 4*A058187(n-2) + A058187(n-3) - A058187(n-4). - R. J. Mathar, Sep 25 2013
a(n) = (4*n^3+21*n^2+14*n-9+3*(n^2+6*n+3)*(-1)^n)/48. - Luce ETIENNE, Nov 14 2014
E.g.f.: (1/24)*( x*(9 + 18*x + 2*x^2)*cosh(x) + (-9 + 30*x + 15*x^2 + 2*x^3)*sinh(x) ). - G. C. Greubel, Jul 13 2022

A057884 A square array based on tetrahedral numbers (A000292) with each term being the sum of 2 consecutive terms in the previous row.

Original entry on oeis.org

1, 0, 1, 4, 1, 1, 0, 4, 2, 1, 10, 4, 5, 3, 1, 0, 10, 8, 7, 4, 1, 20, 10, 14, 13, 10, 5, 1, 0, 20, 20, 22, 20, 14, 6, 1, 35, 20, 30, 34, 35, 30, 19, 7, 1, 0, 35, 40, 50, 56, 55, 44, 25, 8, 1, 56, 35, 55, 70, 84, 91, 85, 63, 32, 9, 1, 0, 56, 70, 95, 120, 140, 146, 129, 88, 40, 10, 1
Offset: 0

Views

Author

Henry Bottomley, Nov 20 2000

Keywords

Examples

			Rows are (1,0,4,0,10,0,20,...), (1,1,4,4,10,10,20,...), (1,2,5,8,14,20,30,...), (1,3,7,13,22,34,50,...), (1,4,10,20,35,56,84,...) etc.
		

Crossrefs

Rows are A000292 with zeros, A058187 (A000292 with terms duplicated), A006918, A002623, A000292, A000330, A005900, A001845, A008412.

Formula

T(n, k)=T(n-1, k-1)+T(n, k-1) with T(0, k)=1, T(4, 1)=4, T(0, 2n)=T(4, n) and T(0, 2n+1)=0. Coefficient of x^n in expansion of (1+x)^k/(1-x^2)^4.

A189980 a(n) is the number of incongruent two-color bracelets of n beads, 10 from them are black (A005515), having a diameter of symmetry.

Original entry on oeis.org

1, 1, 6, 6, 21, 21, 56, 56, 126, 126, 252, 252, 462, 462, 792, 792, 1287, 1287, 2002, 2002, 3003, 3003, 4368, 4368, 6188, 6188, 8568, 8568, 11628, 11628, 15504, 15504, 20349, 20349, 26334, 26334, 33649, 33649
Offset: 10

Views

Author

Vladimir Shevelev, May 03 2011

Keywords

Comments

For n >= 11, a(n-1) is the number of incongruent two-color bracelets of n beads, 11 from them are black (A032282), having a diameter of symmetry.

Crossrefs

Programs

Formula

a(n) = binomial(floor(n/2), 5). [Typo fixed by Colin Barker, Feb 07 2013]
a(n+6) = A194005(n, n-5). - Johannes W. Meijer, Aug 15 2011
G.f.: x^10/((x-1)^6*(x+1)^5). - Colin Barker, Feb 07 2013

Extensions

Data added and link corrected by Johannes W. Meijer, Aug 15 2011

A157898 Triangle read by rows: inverse binomial transform of A059576.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 0, 2, 2, 4, 1, 2, 6, 4, 8, 0, 3, 6, 16, 8, 16, 1, 3, 12, 16, 40, 16, 32, 0, 4, 12, 40, 40, 96, 32, 64, 1, 4, 20, 40, 120, 96, 224, 64, 128, 0, 5, 20, 80, 120, 336, 224, 512, 128, 256
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Mar 08 2009

Keywords

Comments

The inverse binomial transform of the triangle A059576 is given by multiplying the triangle with A130595 from the left.

Examples

			First few rows of the triangle =
  1;
  0, 1;
  1, 1,  2;
  0, 2,  2,  4;
  1, 2,  6,  4,   8;
  0, 3,  6, 16,   8,  16;
  1, 3, 12, 16,  40,  16,  32;
  0, 4, 12, 40,  40,  96,  32,  64;
  1, 4, 20, 40, 120,  96, 224,  64, 128;
  0, 5, 20, 80, 120, 336, 224, 512, 128, 256;
  ...
		

Crossrefs

Programs

  • Magma
    A011782:= func< n | n eq 0 select 1 else 2^(n-1) >;
    function t(n, k) // t = A059576
      if k eq 0 or k eq n then return A011782(n);
      else return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1);
      end if; return t;
    end function;
    A157898:= func< n,k | (&+[(-1)^(n-j)*Binomial(n,j)*t(j,k): j in [k..n]]) >;
    [A157898(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 03 2022
    
  • Maple
    A059576 := proc (n, k)
        if n = 0 then
            return 1;
        end if;
        if k <= n and k >= 0 then
            add((-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k), j = 0 .. min(k, n-k))
        else
            0 ;
        end if
    end proc:
    A157898 := proc(n,k)
        add ( A130595(n,j)*A059576(j,k),j=k..n) ;
    end proc: # R. J. Mathar, Feb 13 2013
  • Mathematica
    t[n_, k_]:= t[n, k]= If[k==0 || k==n, 2^(n-1) +Boole[n==0]/2, 2*t[n-1, k-1] + 2*t[n-1, k] -(2 -Boole[n==2])*t[n-2, k-1]]; (* t= A059576 *)
    A157898[n_, k_]:= A157898[n, k]= Sum[(-1)^(n-j)*Binomial[n,j]*t[j,k], {j,k,n}];
    Table[A157898[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 03 2022 *)
  • SageMath
    @CachedFunction
    def t(n, k): # t = A059576
        if (k==0 or k==n): return bool(n==0)/2 + 2^(n-1) # A011782
        else: return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1)
    def A157898(n,k): return sum((-1)^(n-j)*binomial(n,j)*t(j,k) for j in (k..n))
    flatten([[A157898(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 03 2022

Formula

Sum_{k=0..n} T(n, k) = A097076(n+1).
From G. C. Greubel, Sep 03 2022: (Start)
T(n, k) = Sum_{j=k..n} (-1)^(n-j)*binomial(n,j)*A059576(j,k).
T(n, 0) = A059841(n).
T(n, 1) = A004526(n-1).
T(n, 2) = 2*A008805(n-2).
T(n, 3) = 4*A058187(n-3).
T(n, 4) = 8*A189976(n+4).
T(n, n) = A011782(n).
T(n, n-1) = A011782(n) - [n==0]. (End)

A176415 Periodic sequence: repeat 7,1.

Original entry on oeis.org

7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7
Offset: 0

Views

Author

Klaus Brockhaus, Apr 17 2010

Keywords

Comments

Interleaving of A010727 and A000012.
Also continued fraction expansion of (7+sqrt(77))/2.
Also decimal expansion of 71/99.
Essentially first differences of A047521.
Binomial transform of A176414.
Inverse binomial transform of 2*A020707 preceded by 7.
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 4*x^3 + 10*x^4 + 10*x^5 + ... is the o.g.f. for A058187. - Peter Bala, Mar 13 2015

Crossrefs

Cf. A010727 (all 7's sequence), A000012 (all 1's sequence), A092290 (decimal expansion of (7+sqrt(77))/2), A010688 (repeat 1, 7), A047521 (congruent to 0 or 7 mod 8), A176414 (expansion of (7+8*x)/(1+2*x)), A020707 (2^(n+2)), A058187.

Programs

  • Magma
    &cat[ [7, 1]: n in [0..52] ];
    [ 4+3*(-1)^n: n in [0..104] ];
    
  • Mathematica
    PadRight[{},120,{7,1}] (* Harvey P. Dale, Dec 30 2018 *)
  • PARI
    a(n)=7-n%2*6 \\ Charles R Greathouse IV, Oct 28 2011

Formula

a(n) = 4+3*(-1)^n.
a(n) = a(n-2) for n > 1; a(0) = 7, a(1) = 1.
a(n) = -a(n-1)+8 for n > 0; a(0) = 7.
a(n) = 7*((n+1) mod 2)+(n mod 2).
a(n) = A010688(n+1).
G.f.: (7+x)/(1-x^2).
Dirichglet g.f.: (1+6*2^(-s))*zeta(s). - R. J. Mathar, Apr 06 2011
Multiplicative with a(2^e) = 7, and a(p^e) = 1 for p >= 3. - Amiram Eldar, Jan 01 2023

A247976 Triangle read by rows: T(n,k) generated by m-gon expansions in the case of odd m with "vertex to vertex" version or even m with "vertex to side" version. (See comment for details.)

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 4, 6, 4, 1, 4, 6, 4, 1, 4, 6, 4, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 5, 10, 10, 5, 1, 5, 10, 10, 5, 1, 5, 10, 10, 5, 1, 6, 15, 20, 15, 6, 1, 6, 15, 20, 15, 6, 1, 6, 15, 20, 15, 6, 1, 6, 15, 20, 15, 6, 1, 7, 21, 35, 35, 21, 7
Offset: 1

Views

Author

Kival Ngaokrajang, Sep 28 2014

Keywords

Comments

Refer to triangle expansions in A061777 and A101946 (and their companions for m-gons) which are "vertex to vertex" and "vertex to side" versions respectively. The label values at each iteration can be arranged as triangle. Any m-gon can also be arranged as the same triangle with conditions: (i) m is odd and expansion is "vertex to vertex" version or (ii) m is even and expansion is "vertex to side" version. m*Sum_{i=1..k}T(n,k) gives the total label value in n-th iteration. See illustration.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,  2;
  1,  2,  1,  2;
  1,  2,  1,  3,  3;
  1,  3,  3,  1,  3,  3;
  1,  3,  3,  1,  4,  6,  4;
  1,  4,  6,  4,  1,  4,  6,  4;
  1,  4,  6,  4,  1,  5, 10, 10,  5;
  1,  5, 10, 10,  5,  1,  5, 10, 10, 5;
  ...
		

Crossrefs

Rows sum: A027383.
Column (start from 1s): c3=A008805, c4=A058187, c5=A000332 repeated, c6=A000389 repeated, c7=A000579 repeated.
Vertex to vertex: A061777, A247618, A247619, A247620.
Vertex to side: A101946, A247903, A247904, A247905.
Cf. A074909.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==1, 1, If[k==n, Floor[(n+1)/2], If[OddQ[n], If[k<=(n+ 1)/2, T[n-1, k], T[n-1, k-1] + T[n-1, k]], If[kG. C. Greubel, Feb 18 2022 *)
  • Sage
    @CachedFunction
    def T(n,k): # A247976
        if (k==1): return 1
        elif (k==n): return (n+1)//2
        elif (n%2==1): return T(n-1,k) if (k <= (n+1)/2) else T(n-1,k-1) + T(n-1,k)
        else: return T(n-1,k-1)+T(n-1,k) if (k < (n+2)/2) else T(n,k-n/2)
    flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Feb 18 2022

Formula

T(n, k) = ( T(n-1, k) if k <= (n+1)/2 otherwise T(n-1, k-1) + T(n-1, k) ) for odd n rows, ( T(n-1, k-1) + T(n-1, k) if k < (n+2)/2 otherwise T(n, k - n/2) ) for even n rows, with T(n, 1) = 1 and T(n, n) = floor((n+1)/2). - G. C. Greubel, Feb 18 2022
Previous Showing 11-20 of 31 results. Next