cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A194005 Triangle of the coefficients of an (n+1)-th order differential equation associated with A103631.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 6, 3, 1, 1, 6, 5, 10, 6, 4, 1, 1, 7, 6, 15, 10, 10, 4, 1, 1, 8, 7, 21, 15, 20, 10, 5, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1, 1, 10, 9, 36, 28, 56, 35, 35, 15, 6, 1, 1, 11, 10, 45, 36, 84, 56, 70, 35, 21, 6, 1
Offset: 0

Views

Author

Johannes W. Meijer and A. Hirschberg (a.hirschberg(AT)tue.nl), Aug 11 2011

Keywords

Comments

This triangle is a companion to Parks' triangle A103631.
The coefficients of triangle A103631(n,k) appear in appendix 2 of Park’s remarkable article “A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov” if we assume that the b(n) coefficients are all equal to 1, see the second Maple program.
The a(n,k) coefficients of the triangle given above are related to the coefficients of a linear (n+1)-th order differential equation for the case b(n)=1, see the examples.
a(n,k) is also the number of symmetric binary strings of odd length n with Hamming weight k>0 and no consecutive 1's. - Christian Barrientos and Sarah Minion, Feb 27 2018

Examples

			For the 5th-order linear differential equation the coefficients a(k) are: a(0) = 1, a(1) = a(4,0) = 1, a(2) = a(4,1) = 4, a(3) = a(4,2) = 3, a(4) = a(4,3) = 3 and a(5) = a(4,4) = 1.
The corresponding Hurwitz matrices A(k) are, see Parks: A(5) = Matrix([[a(1),a(0),0,0,0], [a(3),a(2),a(1),a(0),0], [a(5),a(4),a(3),a(2),a(1)], [0,0,a(5),a(4),a(3)], [0,0,0,0,a(5)]]), A(4) = Matrix([[a(1),a(0),0,0], [a(3),a(2),a(1),a(0)], [a(5),a(4),a(3),a(2)], [0,0,a(5),a(4)]]), A(3) = Matrix([[a(1),a(0),0], [a(3),a(2),a(1)], [a(5),a(4),a(3)]]), A(2) = Matrix([[a(1),a(0)], [a(3),a(2)]]) and A(1) = Matrix([[a(1)]]).
The values of b(k) are, see Parks: b(1) = d(1), b(2) = d(2)/d(1), b(3) = d(3)/(d(1)*d(2)), b(4) = d(1)*d(4)/(d(2)*d(3)) and b(5) = d(2)*d(5)/(d(3)*d(4)).
These a(k) values lead to d(k) = 1 and subsequently to b(k) = 1 and this confirms our initial assumption, see the comments.
'
Triangle starts:
  [0] 1;
  [1] 1, 1;
  [2] 1, 2, 1;
  [3] 1, 3, 2,  1;
  [4] 1, 4, 3,  3,  1;
  [5] 1, 5, 4,  6,  3,  1;
  [6] 1, 6, 5, 10,  6,  4,  1;
  [7] 1, 7, 6, 15, 10, 10,  4,  1;
  [8] 1, 8, 7, 21, 15, 20, 10,  5, 1;
  [9] 1, 9, 8, 28, 21, 35, 20, 15, 5, 1;
		

Crossrefs

Cf. A065941 and A103631.
Triangle sums (see A180662): A000071 (row sums; alt row sums), A075427 (Kn22), A000079 (Kn3), A109222(n+1)-1 (Kn4), A000045 (Fi1), A034943 (Ca3), A001519 (Gi3), A000930 (Ze3)
Interesting diagonals: T(n,n-4) = A189976(n+5) and T(n,n-5) = A189980(n+6)
Cf. A052509.

Programs

  • Haskell
    a194005 n k = a194005_tabl !! n !! k
    a194005_row n = a194005_tabl !! n
    a194005_tabl = [1] : [1,1] : f [1] [1,1] where
       f row' row = rs : f row rs where
         rs = zipWith (+) ([0,1] ++ row') (row ++ [0])
    -- Reinhard Zumkeller, Nov 22 2012
  • Maple
    A194005 := proc(n, k): binomial(floor((2*n+1-k)/2), n-k) end:
    for n from 0 to 11 do seq(A194005(n, k), k=0..n) od;
    seq(seq(A194005(n,k), k=0..n), n=0..11);
    nmax:=11: for n from 0 to nmax+1 do b(n):=1 od:
    A103631 := proc(n,k) option remember: local j: if k=0 and n=0 then b(1)
    elif k=0 and n>=1 then 0 elif k=1 then b(n+1) elif k=2 then b(1)*b(n+1)
    elif k>=3 then expand(b(n+1)*add(procname(j,k-2), j=k-2..n-2)) fi: end:
    for n from 0 to nmax do for k from 0 to n do
    A194005(n,k):= add(A103631(n1,k), n1=k..n) od: od:
    seq(seq(A194005(n,k),k=0..n), n=0..nmax);
  • Mathematica
    Flatten[Table[Binomial[Floor[(2n+1-k)/2],n-k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Apr 15 2012 *)

Formula

T(n,k) = binomial(floor((2*n+1-k)/2), n-k).
T(n,k) = sum(A103631(n1,k), n1=k..n), 0<=k<=n and n>=0.
T(n,k) = sum(binomial(floor((2*n1-k-1)/2), n1-k), n1=k..n).
T(n,0) = T(n,n) = 1, T(n,k) = T(n-2,k-2) + T(n-1,k), 0 < k < n. - Reinhard Zumkeller, Nov 23 2012

A244419 Coefficient triangle of polynomials related to the Dirichlet kernel. Rising powers. Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)).

Original entry on oeis.org

1, 1, 2, -1, 2, 4, -1, -4, 4, 8, 1, -4, -12, 8, 16, 1, 6, -12, -32, 16, 32, -1, 6, 24, -32, -80, 32, 64, -1, -8, 24, 80, -80, -192, 64, 128, 1, -8, -40, 80, 240, -192, -448, 128, 256, 1, 10, -40, -160, 240, 672, -448, -1024, 256, 512, -1, 10, 60, -160, -560, 672, 1792, -1024, -2304, 512, 1024
Offset: 0

Views

Author

Wolfdieter Lang, Jul 29 2014

Keywords

Comments

This is the row reversed version of A180870. See also A157751 and A228565.
The Dirichlet kernel is D(n,x) = Sum_{k=-n..n} exp(i*k*x) = 1 + 2*Sum_{k=1..n} T(n,x) = S(n, 2*y) + S(n-1, 2*y) = S(2*n, sqrt(2*(1+y))) with y = cos(x), n >= 0, with the Chebyshev polynomials T (A053120) and S (A049310). This triangle T(n, k) gives in row n the coefficients of the polynomial Dir(n,y) = D(n,x=arccos(y)) = Sum_{m=0..n} T(n,m)*y^m. See A180870, especially the Peter Bala comments and formulas.
This is the Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)) due to the o.g.f. for Dir(n,y) given by (1+z)/(1 - 2*y*z + z^2) = G(z)/(1 - y*F(z)) with G(z) = (1+z)/(1+z^2) and F(z) = 2*z/(1+z^2) (see the Peter Bala formula under A180870). For Riordan triangles and references see the W. Lang link 'Sheffer a- and z- sequences' under A006232.
The A- and Z- sequences of this Riordan triangle are (see the mentioned W. Lang link in the preceding comment also for the references): The A-sequence has o.g.f. 1+sqrt(1-x^2) and is given by A(2*k+1) = 0 and A(2*k) [2, -1/2, -1/8, -1/16, -5/128, -7/256, -21/1024, -33/2048, -429/32768, -715/65536, ...], k >= 0. (See A098597 and A046161.)
The Z-sequence has o.g.f. sqrt((1-x)/(1+x)) and is given by
[1, -1, 1/2, -1/2, 3/8, -3/8, 5/16, -5/16, 35/128, -35/128, ...]. (See A001790 and A046161.)
The column sequences are A057077, 2*(A004526 with even numbers signed), 4*A008805 (signed), 8*A058187 (signed), 16*A189976 (signed), 32*A189980 (signed) for m = 0, 1, ..., 5.
The row sums give A005408 (from the o.g.f. due to the Riordan property), and the alternating row sums give A033999.
The row polynomials Dir(n, x), n >= 0, give solutions to the diophantine equation (a + 1)*X^2 - (a - 1)*Y^2 = 2 by virtue of the identity (a + 1)*Dir(n, -a)^2 - (a - 1)*Dir(n, a)^2 = 2, which is easily proved inductively using the recurrence Dir(n, a) = (1 + a)*(-1)^(n-1)*Dir(n-1, -a) + a*Dir(n-1, a) given below by Wolfdieter Lang. - Peter Bala, May 08 2025

Examples

			The triangle T(n,m) begins:
  n\m  0   1   2    3    4    5    6     7     8    9    10 ...
  0:   1
  1:   1   2
  2:  -1   2   4
  3:  -1  -4   4    8
  4:   1  -4 -12    8   16
  5:   1   6 -12  -32   16   32
  6:  -1   6  24  -32  -80   32   64
  7:  -1  -8  24   80  -80 -192   64   128
  8:   1  -8 -40   80  240 -192 -448   128   256
  9:   1  10 -40 -160  240  672 -448 -1024   256  512
  10: -1  10  60 -160 -560  672 1792 -1024 -2304  512  1024
  ...
Example for A-sequence recurrence: T(3,1) = Sum_{j=0..2} A(j)*T(2,j) = 2*(-1) + 0*2 + (-1/2)*4 = -4. Example for Z-sequence recurrence: T(4,0) = Sum_{j=0..3} Z(j)*T(3,j) = 1*(-1) + (-1)*(-4) + (1/2)*4 + (-1/2)*8 = +1. (For the A- and Z-sequences see a comment above.)
Example for the alternate recurrence: T(4,2) = 2*T(3,1) - T(3,2) = 2*(-4) - 4 = -12. T(4,3) = 0*T(3,2) + T(3,3) = T(3,3) = 8. - _Wolfdieter Lang_, Jul 30 2014
		

Crossrefs

Dir(n, x) : A005408 (x = 1), A002878 (x = 3/2), A001834 (x = 2), A030221 (x = 5/2), A002315 (x = 3), A033890 (x = 7/2), A057080 (x = 4), A057081 (x = 9/2), A054320 (x = 5), A077416 (x = 6), A028230 (x = 7), A159678 (x = 8), A049629 (x = 9), A083043 (x = 10),
(-1)^n * Dir(n, x): A122367 (x = -3/2); A079935 (x = -2), A004253 (x = -5/2), A001653 (x = -3), A049685 (x = -7/2), A070997 (x = -4), A070998 (x = -9/2), A072256(n+1) (x = -5).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0, (-1)^Quotient[n, 2], (0 <= n && n < k) || (n == -1 && k == 1), 0, True, 2 T[n-1, k-1] - T[n-2, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2019, from Sage *)
  • Sage
    def T(n, k):
        if k == 0: return (-1)^(n//2)
        if (0 <= n and n < k) or (n == -1 and k == 1): return 0
        return 2*T(n-1, k-1) - T(n-2, k)
    for n in range(11): [T(n,k) for k in (0..n)] # Peter Luschny, Jul 29 2014

Formula

T(n, m) = [y^m] Dir(n,y) for n >= m >= 0 and 0 otherwise, with the polynomials Dir(y) defined in a comment above.
T(n, m) = 2^m*(S(n,m) + S(n-1,m)) with the entries S(n,m) of A049310 given there explicitly.
O.g.f. for polynomials Dir(y) see a comment above (Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2))).
O.g.f. for column m: ((1 + x)/(1 + x^2))*(2*x/(1 + x^2))^m, m >= 0, (Riordan property).
Recurrence for the polynomials: Dir(n, y) = 2*y*Dir(n-1, y) - Dir(n-2, y), n >= 1, with input D(-1, y) = -1 and D(0, y) = 1.
Triangle three-term recurrence: T(n,m) = 2*T(n-1,m-1) - T(n-2,m) for n >= m >= 1 with T(n,m) = 0 if 0 <= n < m, T(0,0) = 1, T(-1,1) = 0 and T(n,0) = A057077(n) = (-1)^(floor(n/2)).
From Wolfdieter Lang, Jul 30 2014: (Start)
In analogy to A157751 one can derive a recurrence for the row polynomials Dir(n, y) = Sum_{m=0..n} T(n,m)*y^m also using a negative argument but only one recursive step: Dir(n,y) = (1+y)*(-1)^(n-1)*Dir(n-1,-y) + y*Dir(n-1,y), n >= 1, Dir(0,y) = 1 (Dir(-1,y) = -1). See also A180870 from where this formula can be derived by row reversion.
This entails another triangle recurrence T(n,m) = (1 + (-1)^(n-m))*T(n-1,m-1) - (-1)^(n-m)*T(n-1,m), for n >= m >= 1 with T(n,m) = 0 if n < m and T(n,0) = (-1)^floor(n/2). (End)
From Peter Bala, Aug 14 2022: (Start)
The row polynomials Dir(n,x), n >= 0, are related to the Chebyshev polynomials of the first kind T(n,x) by the binomial transform as follows:
(2^n)*(x - 1)^(n+1)*Dir(n,x) = (-1) * Sum_{k = 0..2*n+1} binomial(2*n+1,k)*T(k,-x).
Note that Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x). (End)
From Peter Bala, May 04 2025: (Start)
For n >= 1, the n-th row polynomial Dir(n, x) = (-1)^n * (U(n, -x) - U(n-1, -x)) = U(2*n, sqrt((1+x)/2)), where U(n, x) denotes the n-th Chebyshev polynomial of the second kind.
For n >= 1 and x < 1, Dir(n, x) = (-1)^n * sqrt(2/(1 - x )) * T(2*n+1, sqrt((1 - x)/2)), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
Dir(n, x)^2 - 2*x*Dir(n, x)*Dir(n+1, x) + Dir(n+1, x)^2 = 2*(1 + x).
Dir(n, x) = (-1)^n * R(n, -2*(x+1)), where R(n, x) is the n-th row polynomial of the triangle A085478.
Dir(n, x) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n+k, 2*k) * (2*x + 2)^k. (End)

A157751 Triangle of coefficients of polynomials F(n,x) in descending powers of x generated by F(n,x)=(x+1)*F(n-1,x)+F(n-1,-x), with initial F(0,x)=1.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 4, 4, 8, 1, 4, 12, 8, 16, 1, 6, 12, 32, 16, 32, 1, 6, 24, 32, 80, 32, 64, 1, 8, 24, 80, 80, 192, 64, 128, 1, 8, 40, 80, 240, 192, 448, 128, 256, 1, 10, 40, 160, 240, 672, 448, 1024, 256, 512, 1, 10, 60, 160, 560, 672, 1792, 1024, 2304, 512, 1024, 1, 12, 60, 280, 560, 1792, 1792, 4608, 2304, 5120, 1024, 2048
Offset: 0

Views

Author

Clark Kimberling, Mar 05 2009

Keywords

Comments

Conjecture 1. If n>1 is even then F(n,x) has no real roots.
Conjecture 2. If n>0 is odd then F(n,x) has exactly one real root, r,
and if n>4 then 0 < -r < n.
Conjectures 1 and 2 are true. [From Alain Thiery (Alain.Thiery(AT)math.u-bordeaux1.fr), May 14 2010]
Cayley (1876) states "We, in fact, find 1 + sin u = 1 + x, 1 - sin 3u = (1 + x)(1 - 2x)^2, 1 + sin 5u = (1 + x)(1 + 2x - 4x^2)^2, 1 - sin 7u = (1 + x)(1 - 4x - 4x^2 + 8x^3)^2, &c.". - Michael Somos, Jun 19 2012
Appears to be the unsigned row reverse of A180870 and A228565. - Peter Bala, Feb 17 2014
From Wolfdieter Lang, Jul 29 2014: (Start)
This triangle is the Riordan triangle ((1+z)/(1-z^2), 2*z/(1-z^2)). For Riordan triangles see the W. Lang link 'Sheffer a-and z-sequences' under A006232, also for references. The o.g.f. given by Peter Bala in the formula section refers to the row reversed triangle. The usual information on this triangle, like o.g.f. for the columns, the row sums, the alternating row sums, the recurrences using A- and Z-sequences, etc. follows from this Riordan property. The Riordan proof follows from the given o.g.f. by Peter Bala, call it Grev(x,z), by row reversion: G(x,z) = Grev(1/x,x*z) = (1+z)/(1- 2*x*z - z^2) = G(z)*(1/(1 - x*F(z))) with G(z) = (1+z)/(1-z^2) and F(z) = z*2/(1-z^2). See A244419 for the discussion for a signed version of this triangle.
(End)

Examples

			Rows 0 to 8:
1
1 2
1 2 4
1 4 4 8
1 4 12 8 16
1 6 12 32 16 32
1 6 24 32 80 32 64
1 8 24 80 80 192 64 128
1 8 40 80 240 192 448 128 256
(Row 8) = (1, 4*2, 10*4, 10*8, 15*16, 6*32, 7*64, 1*128, 1*256).
First few polynomials:
F(0,x)=1, F(1,x)=x+2, F(2,x)=x^2+2*x+4, F(3,x)=x^3+4*x^2+4*x+8.
The row polynomials R(n,x) start: 1, 1 + 2*x = x*F(1,1/x), 1 + 2*x + 4^x^2 = x^2*F(2,1/x), ...  - _Wolfdieter Lang_, Jul 29 2014
		

References

  • A. Cayley, On an Expression for 1 +- sin(2p+1)u in Terms of sin u, Messenger of Mathematics, 5 (1876), pp. 7-8 = Mathematical Papers Vol. 10, n. 630, pp. 1-2.

Crossrefs

Programs

  • Mathematica
    T[n_, 0]:= 1; T[n_, n_]:= 2^n; T[n_, k_]:= T[n, k] = T[n-1, k] + (1 + (-1)^(n-k))*T[n-1, k-1]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] (* G. C. Greubel, Sep 24 2018 *)
  • PARI
    t(n,k) = if(k==0, 1, if(k==n, 2^n, t(n-1,k) + (1+(-1)^(n-k))*t(n-1,k-1)));
    for(n=0,15, for(k=0,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Sep 24 2018

Formula

Count the top row as row 0 and let C(n,k) denote the usual binomial
coefficient. For row 2n, define p(0)=C(n,0), p(1)=C(n,1), p(2)=C(n+1,2),
p(3)=C(n+1,3), p(4)=C(n+2,4), p(5)=c(n+2,5),..., until reaching two final
1's: p(2n-1)=C(2n-1,2n-1) and p(2n)=C(2n,2n). Then the k-th number in row
2n is p(k)*2^k. For row 2n+1, define q(0)=C(n,0), q(1)=C(n+1,1),
q(2)=C(n+1,2), q(3)=C(n+2,3),..., until reaching q(2n+1)=C(2n+1,2n+1).
Then the k-th number in row 2n+1 is q(k)*2^k.
From Peter Bala, Jan 17 2014: (Start)
Working with an offset of 0, the o.g.f. is (1 + x*z)/(1 - 2*z - x^2*z^2) = 1 + (x + 2)*z + (x^2 + 2*x + 4)*z^2 + ....
Recurrence equation: T(n,k) = 2*T(n-1,k-1) + T(n-2,k-2) with T(n,0) = 1.
The polynomials G(n,x) defined by G(0,x) = 1 and G(n,x) = x*F(n-1,x) for n >= 1 satisfy G(n,x) = (x + 1)*G(n-1,x) - G(n-1,-x). Cf. A140070 and A140071. (End)
From Wolfdieter Lang, Jul 29 2014: (Start)
O.g.f. for the row polynomials (rising powers of x) R(n,x) = x^n*F(n,1/x): (1+z)/(1 - 2*x*z - z^2). Riordan triangle ((1+z)/(1-z^2), 2*z/(1-z^2)). See a comment above.
Recurrence for the row polynomials R(n,x) = (1+x)*R(n-1,x) - (-1)^n*x*R(n-1,-x), n >= 1, R(0,x) = 1.
R(n,x) = Ftilde(n,2*x) + Ftilde(n-1,2*x) with the monic Fibonacci polynomials Ftilde(n,x) given in A168561.
Recurrence for the triangle: R(n,m) = R(n-1,m) + (1 + (-1)^(n-m))*R(n-1,m-1), n >= m >= 1, R(n,m) = 0 if n < m, R(n,0) = 1.
O.g.f. column sequences ((1+x)/(1-x^2))*(2*x/(1-x^2))^m, m >= 0. See A000012, 2*A004526, 4*A008805, 8*A058187, 16*A189976, 32*A189980, ...
Row sums A078057. Alternating row sums A123335.
(End)

Extensions

Offset corrected to 0. Cf.s added, keyword easy added by Wolfdieter Lang, Jul 29 2014

A010690 Period 2: repeat (1,9).

Original entry on oeis.org

1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1
Offset: 0

Views

Author

Keywords

Comments

Digital roots of the nonzero square triangular numbers. - Ant King, Jan 21 2012
Continued fraction expansion of A176019. - R. J. Mathar, Mar 08 2012
Exp( Sum_{n >= 1} a(n-1)*x^n/n ) = 1 + x + 5*x^2 + 5*x^3 + 15*x^4 + 15*x^5 + ... is the o.g.f. for A189976 (taken with an offset of 0). - Peter Bala, Mar 13 2015
Final digit of 9^n. - Martin Renner, Jun 11 2020
Decimal expansion of 19/99. - Stefano Spezia, Feb 09 2025

Examples

			0.191919191919191919191919191919191919191...
		

Crossrefs

Programs

  • Mathematica
    5+4*(-1)^# &/@Range[81] (* Ant King, Jan 21 2012 *)
  • PARI
    a(n)=1; if(n%2==1, 9, 1) \\ Felix Fröhlich, Aug 11 2014

Formula

G.f.: (1+9x)/((1-x)(1+x)). - R. J. Mathar, Nov 21 2011
a(n) = 9^n mod 10. - Martin Renner, Jun 11 2020
E.g.f.: cosh(x) + 9*sinh(x). - Stefano Spezia, Feb 09 2025
From Amiram Eldar, Jun 09 2025: (Start)
With offset 1:
Multiplicative with a(2^e) = 9, a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 1/2^(s-3)). (End)

A189980 a(n) is the number of incongruent two-color bracelets of n beads, 10 from them are black (A005515), having a diameter of symmetry.

Original entry on oeis.org

1, 1, 6, 6, 21, 21, 56, 56, 126, 126, 252, 252, 462, 462, 792, 792, 1287, 1287, 2002, 2002, 3003, 3003, 4368, 4368, 6188, 6188, 8568, 8568, 11628, 11628, 15504, 15504, 20349, 20349, 26334, 26334, 33649, 33649
Offset: 10

Views

Author

Vladimir Shevelev, May 03 2011

Keywords

Comments

For n >= 11, a(n-1) is the number of incongruent two-color bracelets of n beads, 11 from them are black (A032282), having a diameter of symmetry.

Crossrefs

Programs

Formula

a(n) = binomial(floor(n/2), 5). [Typo fixed by Colin Barker, Feb 07 2013]
a(n+6) = A194005(n, n-5). - Johannes W. Meijer, Aug 15 2011
G.f.: x^10/((x-1)^6*(x+1)^5). - Colin Barker, Feb 07 2013

Extensions

Data added and link corrected by Johannes W. Meijer, Aug 15 2011

A157898 Triangle read by rows: inverse binomial transform of A059576.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 0, 2, 2, 4, 1, 2, 6, 4, 8, 0, 3, 6, 16, 8, 16, 1, 3, 12, 16, 40, 16, 32, 0, 4, 12, 40, 40, 96, 32, 64, 1, 4, 20, 40, 120, 96, 224, 64, 128, 0, 5, 20, 80, 120, 336, 224, 512, 128, 256
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Mar 08 2009

Keywords

Comments

The inverse binomial transform of the triangle A059576 is given by multiplying the triangle with A130595 from the left.

Examples

			First few rows of the triangle =
  1;
  0, 1;
  1, 1,  2;
  0, 2,  2,  4;
  1, 2,  6,  4,   8;
  0, 3,  6, 16,   8,  16;
  1, 3, 12, 16,  40,  16,  32;
  0, 4, 12, 40,  40,  96,  32,  64;
  1, 4, 20, 40, 120,  96, 224,  64, 128;
  0, 5, 20, 80, 120, 336, 224, 512, 128, 256;
  ...
		

Crossrefs

Programs

  • Magma
    A011782:= func< n | n eq 0 select 1 else 2^(n-1) >;
    function t(n, k) // t = A059576
      if k eq 0 or k eq n then return A011782(n);
      else return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1);
      end if; return t;
    end function;
    A157898:= func< n,k | (&+[(-1)^(n-j)*Binomial(n,j)*t(j,k): j in [k..n]]) >;
    [A157898(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 03 2022
    
  • Maple
    A059576 := proc (n, k)
        if n = 0 then
            return 1;
        end if;
        if k <= n and k >= 0 then
            add((-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k), j = 0 .. min(k, n-k))
        else
            0 ;
        end if
    end proc:
    A157898 := proc(n,k)
        add ( A130595(n,j)*A059576(j,k),j=k..n) ;
    end proc: # R. J. Mathar, Feb 13 2013
  • Mathematica
    t[n_, k_]:= t[n, k]= If[k==0 || k==n, 2^(n-1) +Boole[n==0]/2, 2*t[n-1, k-1] + 2*t[n-1, k] -(2 -Boole[n==2])*t[n-2, k-1]]; (* t= A059576 *)
    A157898[n_, k_]:= A157898[n, k]= Sum[(-1)^(n-j)*Binomial[n,j]*t[j,k], {j,k,n}];
    Table[A157898[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 03 2022 *)
  • SageMath
    @CachedFunction
    def t(n, k): # t = A059576
        if (k==0 or k==n): return bool(n==0)/2 + 2^(n-1) # A011782
        else: return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1)
    def A157898(n,k): return sum((-1)^(n-j)*binomial(n,j)*t(j,k) for j in (k..n))
    flatten([[A157898(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 03 2022

Formula

Sum_{k=0..n} T(n, k) = A097076(n+1).
From G. C. Greubel, Sep 03 2022: (Start)
T(n, k) = Sum_{j=k..n} (-1)^(n-j)*binomial(n,j)*A059576(j,k).
T(n, 0) = A059841(n).
T(n, 1) = A004526(n-1).
T(n, 2) = 2*A008805(n-2).
T(n, 3) = 4*A058187(n-3).
T(n, 4) = 8*A189976(n+4).
T(n, n) = A011782(n).
T(n, n-1) = A011782(n) - [n==0]. (End)

A093039 Sequence resulting from a sum of three repeated binomial(n+3,4) sequences.

Original entry on oeis.org

1, 2, 7, 11, 25, 35, 65, 85, 140, 175, 266, 322, 462, 546, 750, 870, 1155, 1320, 1705, 1925, 2431, 2717, 3367, 3731, 4550, 5005, 6020, 6580, 7820, 8500, 9996, 10812, 12597, 13566, 15675, 16815, 19285, 20615, 23485, 25025, 28336, 30107, 33902
Offset: 1

Views

Author

Alford Arnold, May 08 2004

Keywords

Comments

Euler transform of length 3 sequence [2,k,-1] with k=4 (cf. A028724 for k=3). - Georg Fischer, Nov 28 2020

Examples

			b(n) = 1,  1,  5,  5, 15, 15, 35, 35, 70, 70,126,126
     + 0,  1,  1,  5,  5, 15, 15, 35, 35, 70, 70,126
     + 0,  0,  1,  1,  5,  5, 15, 15, 35, 35, 70, 70
     -----------------------------------------------
a(n) = 1,  2,  7, 11, 25, 35, 65, 85,140,175,266,322
		

Crossrefs

Cf. A001651(k=1), A001318(k=2), A028724(k=3).
Cf. repeated binomial coefficients: A008805(k=2), A058187(k=3), A189976(k=4).

Programs

  • Mathematica
    k := 4; nmax := 32; a := Flatten[Table[{Binomial[n,k], Binomial[n,k]},{n,k,nmax}]];
    a + Flatten[Join[{0}, Drop[a,-1]]] + Flatten[Join[{0,0}, Drop[a,-2]]] (* Georg Fischer, Nov 29 2020 *)

Formula

a(1) = b(1), a(2) = b(2), a(n) = b(n) + b(n-1) + b(n-2) for n > 2, where k = 4 and b(n) = binomial(floor((n+7)/2), k) = A189976(n-7).

Extensions

More terms from and edited by Georg Fischer, Nov 28 2020
Showing 1-7 of 7 results.