cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 50 results. Next

A039004 Numbers whose base-4 representation has the same number of 1's and 2's.

Original entry on oeis.org

0, 3, 6, 9, 12, 15, 18, 24, 27, 30, 33, 36, 39, 45, 48, 51, 54, 57, 60, 63, 66, 72, 75, 78, 90, 96, 99, 102, 105, 108, 111, 114, 120, 123, 126, 129, 132, 135, 141, 144, 147, 150, 153, 156, 159, 165, 177, 180, 183, 189, 192, 195, 198, 201, 204, 207, 210, 216, 219
Offset: 1

Views

Author

Keywords

Comments

Numbers such that sum (-1)^k*b(k) = 0 where b(k)=k-th binary digit of n (see A065359). - Benoit Cloitre, Nov 18 2003
Conjecture: a(C(2n,n)-1) = 4^n - 1. (A000984 is C(2n,n)). - Gerald McGarvey, Nov 18 2007
From Russell Jay Hendel, Jun 23 2015: (Start)
We prove the McGarvey conjecture (A) a(e(n,n)-1) = 4^n-1, with e(n,m) = A034870(n,m) = binomial(2n,m), the even rows of Pascal's triangle. By the comment from Hendel in A034870, we have the function s(n,k) = #{n-digit, base-4 numbers with n-k more 1-digits than 2-digits}. As shown in A034870, (B) #s(n,k)= e(n,k) with # indicating cardinality, that is, e(n,k) = binomial(2n,k) gives the number of n-digit, base-4 numbers with n-k more 1-digits than 2-digits.
We now show that (B) implies (A). By definition, s(n,n) contains the e(n,n) = binomial(2n,n) numbers with an equal number of 1-digits and 2-digits. The biggest n-digit, base-4 number is 333...3 (n copies of 3). Since 333...33 has zero 1-digits and zero 2-digits it follows that 333...333 is a member of s(n,n) and hence it is the biggest member of s(n,n). But 333...333 (n copies of 3) in base 4 has value 4^n-1. Since A039004 starts with index 0 (that is, 0 is the 0th member of A039004), it immediately follows that 4^n-1 is the (e(n,n)-1)st member of A039004, proving the McGarvey conjecture. (End)
Also numbers whose alternating sum of binary expansion is 0, i.e., positions of zeros in A345927. These are numbers whose binary expansion has the same number of 1's at even positions as at odd positions. - Gus Wiseman, Jul 28 2021

Crossrefs

A subset of A001969 (evil numbers).
A base-2 version is A031443 (digitally balanced numbers).
Positions of 0's in A065359 and A345927.
Positions of first appearances are A086893.
The version for standard compositions is A344619.
A000120 and A080791 count binary digits, with difference A145037.
A003714 lists numbers with no successive binary indices.
A011782 counts compositions.
A030190 gives the binary expansion of each nonnegative integer.
A070939 gives the length of an integer's binary expansion.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A101211 lists run-lengths in binary expansion:
- row-lengths: A069010
- reverse: A227736
- ones only: A245563
A138364 counts compositions with alternating sum 0:
- bisection: A001700/A088218
- complement: A058622
A328594 lists numbers whose binary expansion is aperiodic.
A345197 counts compositions by length and alternating sum.

Programs

  • Fortran
    c See link in A139351.
  • Maple
    N:= 1000: # to get all terms up to N, which should be divisible by 4
    B:= Array(0..N-1):
    d:= ceil(log[4](N));
    S:= Array(0..N-1,[seq(op([0,1,-1,0]),i=1..N/4)]):
    for i from 1 to d do
      B:= B + S;
      S:= Array(0..N-1,i-> S[floor(i/4)]);
    od:
    select(t -> B[t]=0, [$0..N-1]); # Robert Israel, Jun 24 2015
  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[IntegerDigits[#,2]]==0&] (* Gus Wiseman, Jul 28 2021 *)
  • PARI
    for(n=0,219,if(sum(i=1,length(binary(n)),(-1)^i*component(binary(n),i))==0,print1(n,",")))
    

Formula

Conjecture: there is a constant c around 5 such that a(n) is asymptotic to c*n. - Benoit Cloitre, Nov 24 2002
That conjecture is false. The number of members of the sequence from 0 to 4^d-1 is binomial(2d,d) which by Stirling's formula is asymptotic to 4^d/sqrt(Pi*d). If Cloitre's conjecture were true we would have 4^d-1 asymptotic to c*4^d/sqrt(Pi*d), a contradiction. - Robert Israel, Jun 24 2015

A347440 Number of factorizations of n with alternating product < 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 4, 0, 1, 1, 2, 0, 3, 0, 3, 1, 1, 1, 3, 0, 1, 1, 4, 0, 3, 0, 2, 2, 1, 0, 6, 0, 2, 1, 2, 0, 4, 1, 4, 1, 1, 0, 6, 0, 1, 2, 3, 1, 3, 0, 2, 1, 3, 0, 8, 0, 1, 2, 2, 1, 3, 0, 6, 1, 1, 0, 6, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2021

Keywords

Comments

All such factorizations have even length and alternating sum < 0, so partitions of this type are counted by A344608.
Also the number of factorizations of n with alternating sum < 0.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(n) factorizations for n = 6, 12, 24, 30, 48, 72, 96, 120:
  2*3  2*6  3*8      5*6   6*8      8*9      2*48         2*60
       3*4  4*6      2*15  2*24     2*36     3*32         3*40
            2*12     3*10  3*16     3*24     4*24         4*30
            2*2*2*3        4*12     4*18     6*16         5*24
                           2*2*2*6  6*12     8*12         6*20
                           2*2*3*4  2*2*2*9  2*2*3*8      8*15
                                    2*2*3*6  2*2*4*6      10*12
                                    2*3*3*4  2*3*4*4      2*2*5*6
                                             2*2*2*12     2*3*4*5
                                             2*2*2*2*2*3  2*2*2*15
                                                          2*2*3*10
		

Crossrefs

Positions of 0's are A000430.
Positions of 2's are A054753.
Positions of non-0's are A080257.
Positions of 1's are A332269.
The weak version (<= 1 instead of < 1) is A339846, ranked by A028982.
The reciprocal version is A339890.
The additive version is A344608, ranked by A119899.
The even-sum additive version is A344743, ranked by A119899 /\ A300061.
Allowing any integer alternating product gives A347437, additive A347446.
The equal version (= 1 instead of < 1) is A347438.
Allowing any integer reciprocal alternating product gives A347439.
The complement (>= 1 instead of < 1) is counted by A347456.
A038548 counts possible reverse-alternating products of factorizations.
A046099 counts factorizations with no alternating permutations.
A071321 gives the alternating sum of prime factors (reverse: A071322).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],altprod[#]<1&]],{n,100}]

Formula

a(2^n) = A344608(n).
a(n) = A339846(n) - A347438(n).

A347443 Number of integer partitions of n with reverse-alternating product <= 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 10, 12, 19, 22, 34, 40, 60, 69, 101, 118, 168, 195, 272, 317, 434, 505, 679, 793, 1050, 1224, 1599, 1867, 2409, 2811, 3587, 4186, 5290, 6168, 7724, 9005, 11186, 13026, 16062, 18692, 22894, 26613, 32394, 37619, 45535, 52815, 63593, 73680
Offset: 0

Views

Author

Gus Wiseman, Sep 14 2021

Keywords

Comments

Includes all partitions of even length (A027187).
Also the number of integer partitions of n with reverse-alternating sum <= 1.
Also the number of integer partitions of n having either even length (A027187) or having exactly one odd part in the conjugate partition (A100824).
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (2111)   (2211)    (331)      (71)
                            (11111)  (3111)    (2221)     (2222)
                                     (111111)  (3211)     (3221)
                                               (4111)     (3311)
                                               (22111)    (4211)
                                               (211111)   (5111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The odd-length case is A035363 (shifted).
The strict case is A067661.
The non-reverse version is counted by A119620, ranked by A347466.
The even bisection is A236913.
The opposite version (>= instead of <=) is A344607.
The case of < 1 instead of <= 1 is A344608.
The multiplicative version (factorizations) is A347438, non-reverse A339846.
Allowing any integer reverse-alternating product gives A347445.
The complement (> 1 instead of <= 1) is counted by A347449.
Ranked by A347465, non-reverse A347450.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A058622 counts compositions with alternating sum <= 0 (A294175 for < 0).
A100824 counts partitions with alternating sum <= 1.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]<=1&]],{n,0,30}]

Formula

a(n) = A027187(n) + A035363(n-1) for n >= 1. [Corrected by Georg Fischer, Dec 13 2022]
a(n) = A119620(n) + A344608(n).

A345908 Traces of the matrices (A345197) counting integer compositions by length and alternating sum.

Original entry on oeis.org

1, 1, 0, 1, 3, 3, 6, 15, 24, 43, 92, 171, 315, 629, 1218, 2313, 4523, 8835, 17076, 33299, 65169
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2021

Keywords

Comments

The matrices (A345197) count the integer compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2. Here, the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. So a(n) is the number of compositions of n of length (n + s)/2, where s is the alternating sum of the composition.

Examples

			The a(0) = 1 through a(7) = 15 compositions of n = 0..7 of length (n + s)/2 where s = alternating sum (empty column indicated by dot):
  ()  (1)  .  (2,1)  (2,2)    (2,3)    (2,4)      (2,5)
                     (1,1,2)  (1,2,2)  (1,3,2)    (1,4,2)
                     (2,1,1)  (2,2,1)  (2,3,1)    (2,4,1)
                                       (1,1,3,1)  (1,1,3,2)
                                       (2,1,2,1)  (1,2,3,1)
                                       (3,1,1,1)  (2,1,2,2)
                                                  (2,2,2,1)
                                                  (3,1,1,2)
                                                  (3,2,1,1)
                                                  (1,1,1,1,3)
                                                  (1,1,2,1,2)
                                                  (1,1,3,1,1)
                                                  (2,1,1,1,2)
                                                  (2,1,2,1,1)
                                                  (3,1,1,1,1)
		

Crossrefs

Traces of the matrices given by A345197.
Diagonals and antidiagonals of the same matrices are A346632 and A345907.
Row sums of A346632.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
Other diagonals are A008277 of A318393 and A055884 of A320808.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==(n+ats[#])/2&]],{n,0,15}]

A348614 Numbers k such that the k-th composition in standard order has sum equal to twice its alternating sum.

Original entry on oeis.org

0, 9, 11, 14, 130, 133, 135, 138, 141, 143, 148, 153, 155, 158, 168, 177, 179, 182, 188, 208, 225, 227, 230, 236, 248, 2052, 2057, 2059, 2062, 2066, 2069, 2071, 2074, 2077, 2079, 2084, 2089, 2091, 2094, 2098, 2101, 2103, 2106, 2109, 2111, 2120, 2129, 2131
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The terms together with their binary indices begin:
    0: ()
    9: (3,1)
   11: (2,1,1)
   14: (1,1,2)
  130: (6,2)
  133: (5,2,1)
  135: (5,1,1,1)
  138: (4,2,2)
  141: (4,1,2,1)
  143: (4,1,1,1,1)
  148: (3,2,3)
  153: (3,1,3,1)
  155: (3,1,2,1,1)
  158: (3,1,1,1,2)
		

Crossrefs

The unordered case (partitions) is counted by A000712, reverse A006330.
These compositions are counted by A262977.
Except for 0, a subset of A345917 (which is itself a subset of A345913).
A000346 = even-length compositions with alt sum != 0, complement A001700.
A011782 counts compositions.
A025047 counts wiggly compositions, ranked by A345167.
A034871 counts compositions of 2n with alternating sum 2k.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A116406 counts compositions with alternating sum >=0, ranked by A345913.
A138364 counts compositions with alternating sum 0, ranked by A344619.
A345197 counts compositions by length and alternating sum.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Total[stc[#]]==2*ats[stc[#]]&]

A014462 Triangular array formed from elements to left of middle of Pascal's triangle.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 5, 10, 1, 6, 15, 1, 7, 21, 35, 1, 8, 28, 56, 1, 9, 36, 84, 126, 1, 10, 45, 120, 210, 1, 11, 55, 165, 330, 462, 1, 12, 66, 220, 495, 792, 1, 13, 78, 286, 715, 1287, 1716, 1, 14, 91, 364, 1001, 2002, 3003, 1, 15, 105, 455, 1365, 3003, 5005, 6435, 1, 16
Offset: 1

Views

Author

Keywords

Comments

Coefficients for Pontryagin classes of projective spaces. See p. 3 of the Wilson link. Aerated to become a lower triangular matrix with alternating zeros on the diagonal, this matrix appparently becomes the reverse, or mirror, of A117178. - Tom Copeland, May 30 2017

Examples

			Array begins:
  1;
  1;
  1,  3;
  1,  4;
  1,  5, 10;
  1,  6, 15;
  1,  7, 21,  35;
  1,  8, 28,  56;
  1,  9, 36,  84, 126;
  1, 10, 45, 120, 210;
  1, 11, 55, 165, 330, 462;
		

Crossrefs

Cf. A014413, A034868, A058622 (row sums).
Cf. A001791 (a half-diagonal and diagonal sums).
Cf. A117178.

Programs

  • Haskell
    a014462 n k = a014462_tabf !! (n-1) !! (k-1)
    a014462_row n = a014462_tabf !! (n-1)
    a014462_tabf = map reverse a014413_tabf
    -- Reinhard Zumkeller, Dec 24 2015

Extensions

More terms from James Sellers

A028330 Elements to the right of the central elements of the even-Pascal triangle A028326.

Original entry on oeis.org

2, 2, 6, 2, 8, 2, 20, 10, 2, 30, 12, 2, 70, 42, 14, 2, 112, 56, 16, 2, 252, 168, 72, 18, 2, 420, 240, 90, 20, 2, 924, 660, 330, 110, 22, 2, 1584, 990, 440, 132, 24, 2, 3432, 2574, 1430, 572, 156, 26, 2, 6006, 4004, 2002, 728, 182, 28, 2, 12870, 10010, 6006, 2730
Offset: 0

Views

Author

Keywords

Examples

			This sequence represents the following portion of A028330(n,k), with x being the elements of A028329(n):
  x;
  .,  2;
  .,  x,  2;
  .,  .,  6,  2;
  .,  .,  x,  8,  2;
  .,  .,  ., 20, 10,   2;
  .,  .,  .,  x, 30,  12,   2;
  .,  .,  .,  ., 70,  42,  14,    2;
  .,  .,  .,  .,  x, 112,  56,   16,   2;
  .,  .,  .,  .,  ., 252, 168,   72,  18,   2;
  .,  .,  .,  .,  .,   x, 420,  240,  90,  20,   2;
  .,  .,  .,  .,  .,   ., 924,  660, 330, 110,  22,  2;
  .,  .,  .,  .,  .,   .,   x, 1584, 990, 440, 132, 24, 2;
As an irregular triangle:
    2;
    2;
    6,   2;
    8,   2;
   20,  10,   2;
   30,  12,   2;
   70,  42,  14,   2;
  112,  56,  16,   2;
  252, 168,  72,  18,  2;
  420, 240,  90,  20,  2;
  924, 660, 330, 110, 22,  2;
		

Crossrefs

Programs

  • Magma
    [[2*Binomial(n,k): k in [Floor((n+2)/2)..n]]: n in [1..12]]; // G. C. Greubel, Jul 14 2024
    
  • Mathematica
    Table[2*Binomial[n+1, k+1 +Floor[(n+1)/2]], {n,0,12}, {k,0,Floor[n/2] }]//Flatten (* G. C. Greubel, Jul 14 2024 *)
  • SageMath
    def A028326(n,k): return 2*binomial(n, k)
    flatten([[A028326(n,k) for k in range(((n+2)//2), n+1)] for n in range(1,21)]) # G. C. Greubel, Jul 14 2024

Formula

a(n) = 2 * A014413(n). - Sean A. Irvine, Dec 29 2019
From G. C. Greubel, Jul 14 2024: (Start)
T(n, k) = 2*binomial(n+1, k+1 + floor((n+1)/2)) for n >= 0, 0 <= k <= floor(n/2).
Sum_{k=0..floor(n/2)} T(n, k) = A202736(n+1) = 2*A058622(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n, k) = 2*A001405(n) = A063886(n+1). (End)

Extensions

More terms from James Sellers

A345907 Triangle giving the main antidiagonals of the matrices counting integer compositions by length and alternating sum (A345197).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 0, 4, 3, 1, 1, 0, 0, 3, 6, 4, 1, 1, 0, 0, 6, 9, 8, 5, 1, 1, 0, 0, 0, 18, 18, 10, 6, 1, 1, 0, 0, 0, 10, 36, 30, 12, 7, 1, 1, 0, 0, 0, 20, 40, 60, 45, 14, 8, 1, 1, 0, 0, 0, 0, 80, 100, 90, 63, 16, 9, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2021

Keywords

Comments

The matrices (A345197) count the integer compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2. Here, the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
Problem: What are the column sums? They appear to match A239201, but it is not clear why.

Examples

			Triangle begins:
   1
   1   1
   0   1   1
   0   1   1   1
   0   2   2   1   1
   0   0   4   3   1   1
   0   0   3   6   4   1   1
   0   0   6   9   8   5   1   1
   0   0   0  18  18  10   6   1   1
   0   0   0  10  36  30  12   7   1   1
   0   0   0  20  40  60  45  14   8   1   1
   0   0   0   0  80 100  90  63  16   9   1   1
   0   0   0   0  35 200 200 126  84  18  10   1   1
   0   0   0   0  70 175 400 350 168 108  20  11   1   1
   0   0   0   0   0 350 525 700 560 216 135  22  12   1   1
		

Crossrefs

Row sums are A163493.
Rows are the antidiagonals of the matrices given by A345197.
The main diagonals of A345197 are A346632, with sums A345908.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
Other diagonals are A008277 of A318393 and A055884 of A320808.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{n-k}],k==(n+ats[#])/2-1&]],{k,0,n-1}],{n,0,15}]

A349155 Numbers k such that the k-th composition in standard order has sum equal to negative twice its reverse-alternating sum.

Original entry on oeis.org

0, 9, 130, 135, 141, 153, 177, 193, 225, 2052, 2059, 2062, 2069, 2074, 2079, 2089, 2098, 2103, 2109, 2129, 2146, 2151, 2157, 2169, 2209, 2242, 2247, 2253, 2265, 2289, 2369, 2434, 2439, 2445, 2457, 2481, 2529, 2561, 2689, 2818, 2823, 2829, 2841, 2865, 2913
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.

Examples

			The terms and corresponding compositions begin:
     0: ()
     9: (3,1)
   130: (6,2)
   135: (5,1,1,1)
   141: (4,1,2,1)
   153: (3,1,3,1)
   177: (2,1,4,1)
   193: (1,6,1)
   225: (1,1,5,1)
  2052: (9,3)
  2059: (8,2,1,1)
  2062: (8,1,1,2)
  2069: (7,2,2,1)
  2074: (7,1,2,2)
  2079: (7,1,1,1,1,1)
  2089: (6,2,3,1)
  2098: (6,1,3,2)
  2103: (6,1,2,1,1,1)
		

Crossrefs

These compositions are counted by A224274 up to 0's.
An unordered version is A348617, counted by A001523 up to 0's.
The positive version is A349153, unreversed A348614.
The unreversed version is A349154.
Positive unordered unreversed: A349159, counted by A000712 up to 0's.
A positive unordered version is A349160, counted by A006330 up to 0's.
A003242 counts Carlitz compositions.
A011782 counts compositions.
A025047 counts alternating or wiggly compositions, complement A345192.
A034871, A097805, and A345197 count compositions by alternating sum.
A103919 counts partitions by alternating sum, reverse A344612.
A116406 counts compositions with alternating sum >=0, ranked by A345913.
A138364 counts compositions with alternating sum 0, ranked by A344619.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
- Heinz number is given by A333219.
Classes of standard compositions:
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Carlitz compositions are ranked by A333489, complement A348612.
- Alternating compositions are ranked by A345167, complement A345168.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[ Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,1000],Total[stc[#]]==-2*sats[stc[#]]&]

A349154 Numbers k such that the k-th composition in standard order has sum equal to negative twice its alternating sum.

Original entry on oeis.org

0, 12, 160, 193, 195, 198, 204, 216, 240, 2304, 2561, 2563, 2566, 2572, 2584, 2608, 2656, 2752, 2944, 3074, 3077, 3079, 3082, 3085, 3087, 3092, 3097, 3099, 3102, 3112, 3121, 3123, 3126, 3132, 3152, 3169, 3171, 3174, 3180, 3192, 3232, 3265, 3267, 3270, 3276
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The terms and corresponding compositions begin:
       0: ()
      12: (1,3)
     160: (2,6)
     193: (1,6,1)
     195: (1,5,1,1)
     198: (1,4,1,2)
     204: (1,3,1,3)
     216: (1,2,1,4)
     240: (1,1,1,5)
    2304: (3,9)
    2561: (2,9,1)
    2563: (2,8,1,1)
    2566: (2,7,1,2)
    2572: (2,6,1,3)
    2584: (2,5,1,4)
		

Crossrefs

These compositions are counted by A224274 up to 0's.
Except for 0, a subset of A345919.
The positive version is A348614, reverse A349153.
An unordered version is A348617, counted by A001523.
The reverse version is A349155.
A positive unordered version is A349159, counted by A000712 up to 0's.
A000346 = even-length compositions with alt sum != 0, complement A001700.
A003242 counts Carlitz compositions.
A011782 counts compositions.
A025047 counts alternating or wiggly compositions, complement A345192.
A034871, A097805, and A345197 count compositions by alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A116406 counts compositions with alternating sum >=0, ranked by A345913.
A138364 counts compositions with alternating sum 0, ranked by A344619.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
Classes of standard compositions:
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Carlitz compositions are ranked by A333489, complement A348612.
- Necklaces are ranked by A065609, dual A333764, reversed A333943.
- Alternating compositions are ranked by A345167, complement A345168.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Total[stc[#]]==-2*ats[stc[#]]&]
Previous Showing 31-40 of 50 results. Next