cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 58 results. Next

A132702 Decimal expansion of 12/Pi.

Original entry on oeis.org

3, 8, 1, 9, 7, 1, 8, 6, 3, 4, 2, 0, 5, 4, 8, 8, 0, 5, 8, 4, 5, 3, 2, 1, 0, 3, 2, 0, 9, 4, 0, 3, 4, 4, 6, 8, 8, 8, 2, 7, 0, 3, 1, 4, 9, 7, 7, 7, 0, 9, 5, 4, 7, 6, 9, 9, 4, 4, 0, 1, 6, 2, 5, 7, 4, 1, 3, 5, 2, 3, 1, 4, 3, 2, 2, 1, 4, 3, 6, 8, 4, 2, 1, 6, 2, 7, 3, 1, 2, 6, 6, 3, 9, 0, 0, 7, 4, 0, 6, 2, 9, 4, 5, 7, 4
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007

Keywords

Comments

From Bernard Schott, Apr 17 2022: (Start)
For any triangle ABC, (see Crux Mathematicorum):
(b+c)/A + (c+a)/B + (a+b)/C >= (12/Pi) * s,
b*c/(A*(s-a)) + c*a/(B*(s-b)) + a*b/(C*(s-c)) >= (12/Pi) * s,
where (A,B,C) are the angles (measured in radians), (a,b,c) the side lengths of this triangle and s the semiperimeter.
Equality stands iff triangle ABC is equilateral. (End)

Examples

			3.819718634...
		

Crossrefs

Programs

Formula

Equals 2*A132696 = 4*A089491 = 6*A060294. -R. J. Mathar, Jul 29 2024

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Jun 19 2009

A132699 Decimal expansion of 9/Pi.

Original entry on oeis.org

2, 8, 6, 4, 7, 8, 8, 9, 7, 5, 6, 5, 4, 1, 1, 6, 0, 4, 3, 8, 3, 9, 9, 0, 7, 7, 4, 0, 7, 0, 5, 2, 5, 8, 5, 1, 6, 6, 2, 0, 2, 7, 3, 6, 2, 3, 3, 2, 8, 2, 1, 6, 0, 7, 7, 4, 5, 8, 0, 1, 2, 1, 9, 3, 0, 6, 0, 1, 4, 2, 3, 5, 7, 4, 1, 6, 0, 7, 7, 6, 3, 1, 6, 2, 2, 0, 4, 8, 4, 4, 9, 7, 9, 2, 5, 5, 5, 5, 4, 7, 2, 0, 9, 3, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007

Keywords

Comments

9/Pi = 2.864788975654...

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Jun 19 2009

A132701 Decimal expansion of 11/Pi.

Original entry on oeis.org

3, 5, 0, 1, 4, 0, 8, 7, 4, 8, 0, 2, 1, 6, 9, 7, 3, 8, 6, 9, 1, 5, 4, 4, 2, 7, 9, 4, 1, 9, 5, 3, 1, 5, 9, 6, 4, 7, 5, 8, 1, 1, 2, 2, 0, 6, 2, 9, 0, 0, 4, 1, 8, 7, 2, 4, 4, 8, 6, 8, 1, 5, 6, 9, 2, 9, 5, 7, 2, 9, 5, 4, 7, 9, 5, 2, 9, 8, 3, 7, 7, 1, 9, 8, 2, 5, 0, 3, 6, 6, 0, 8, 5, 7, 5, 6, 7, 8, 9, 1, 0, 3, 3, 6, 0
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007

Keywords

Examples

			3.501408748021697...
		

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Jun 19 2009

A076668 Decimal expansion of sqrt(2/Pi).

Original entry on oeis.org

7, 9, 7, 8, 8, 4, 5, 6, 0, 8, 0, 2, 8, 6, 5, 3, 5, 5, 8, 7, 9, 8, 9, 2, 1, 1, 9, 8, 6, 8, 7, 6, 3, 7, 3, 6, 9, 5, 1, 7, 1, 7, 2, 6, 2, 3, 2, 9, 8, 6, 9, 3, 1, 5, 3, 3, 1, 8, 5, 1, 6, 5, 9, 3, 4, 1, 3, 1, 5, 8, 5, 1, 7, 9, 8, 6, 0, 3, 6, 7, 7, 0, 0, 2, 5, 0, 4, 6, 6, 7, 8, 1, 4, 6, 1, 3, 8, 7, 2, 8, 6, 0, 6, 0
Offset: 0

Views

Author

Zak Seidov, Oct 25 2002

Keywords

Comments

This is the limit of (n+1)!!/n!!/n^(1/2) at n_even->inf.
Expected value of |x - mu|/sigma for normal distribution with mean mu and standard deviation sigma (i.e., the normalized mean absolute deviation). - Stanislav Sykora, Jun 30 2017

Examples

			0.79788456080286535587989211986876373695171726232986931533...
		

Crossrefs

Cf. A004730, A004731, A019727, A060294 (Buffon's constant 2/Pi), A092678 (probable error).

Programs

  • Magma
    pi:=Sqrt(2/Pi(RealField(110))); Reverse(Intseq(Floor(10^110*pi))); // Vincenzo Librandi, Jul 01 2017
    
  • Mathematica
    RealDigits[Sqrt[2/Pi],10,120][[1]] (* Harvey P. Dale, Feb 05 2012 *)
  • PARI
    sqrt(2/Pi) \\ G. C. Greubel, Sep 23 2017

Formula

Equals A087197*A002193. - R. J. Mathar Feb 05 2009
Equals integral_{-infinity..infinity} (1-erf(x)^2)/2 dx. - Jean-François Alcover, Feb 25 2015

Extensions

More terms and better description from Benoit Cloitre and Michael Somos, Oct 29 2002
Leading zero removed, offset changed by R. J. Mathar, Feb 05 2009

A112628 Decimal expansion of 2*sqrt(2)/Pi.

Original entry on oeis.org

9, 0, 0, 3, 1, 6, 3, 1, 6, 1, 5, 7, 1, 0, 6, 0, 6, 9, 5, 5, 5, 1, 9, 9, 1, 9, 1, 0, 0, 6, 7, 4, 0, 5, 8, 2, 6, 6, 4, 5, 7, 4, 1, 4, 9, 9, 5, 5, 2, 2, 0, 6, 2, 5, 5, 7, 1, 4, 3, 7, 4, 7, 1, 2, 3, 1, 4, 5, 8, 7, 3, 0, 7, 1, 9, 0, 4, 6, 3, 4, 4, 9, 9, 8, 0, 8, 2, 7, 7, 7, 7, 5, 4, 0, 8, 2, 3, 4, 0, 9, 9, 7, 5, 5, 1
Offset: 0

Views

Author

Rick L. Shepherd, Jan 11 2006

Keywords

Comments

Example of extension to Buffon's Needle Problem: The probability that the boundary of a square will intersect one of the parallel lines if the square's diagonal length l (almost) equals the distance d between each pair of lines. This follows directly from the Weisstein/MathWorld Buffon's Needle Problem link's statement P=p/(Pi*d), where P is the probability of intersection with any convex polygon's boundary if the generalized diameter of that polygon is less than d and p is the perimeter of the polygon. (Take d=l, then p=2*sqrt(2)*d.).
The area of a regular octagon circumscribed in a unit-area circle. - Amiram Eldar, Nov 05 2020

Examples

			0.9003163161571060695551991910067405826645741499552206255714374712314587307...
		

Crossrefs

Cf. A060294 (2/Pi), A089491 (3/Pi), A224268.

Programs

  • Magma
    R:= RealField(100); 2*Sqrt(2)/Pi(R); // G. C. Greubel, Aug 17 2018
  • Mathematica
    RealDigits[2 Sqrt[2]/Pi, 10, 110][[1]] (* Bruno Berselli, Apr 02 2013 *)
    (* From the second comment: *) RealDigits[N[Product[1 - 1/(4 n)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
  • PARI
    2*sqrt(2)/Pi
    

Formula

Equals Product_{n>=1} (1-1/(4*n)^2). - Bruno Berselli, Apr 02 2013
Equals sinc(Pi/4). - Peter Luschny, Oct 04 2019
Equals Product_{k>=3} cos(Pi/2^k). - Amiram Eldar, Aug 24 2020

A240935 Decimal expansion of 3*sqrt(3)/(4*Pi).

Original entry on oeis.org

4, 1, 3, 4, 9, 6, 6, 7, 1, 5, 6, 6, 3, 4, 4, 0, 3, 7, 1, 3, 3, 4, 9, 4, 8, 7, 3, 7, 3, 4, 7, 2, 7, 0, 8, 1, 0, 4, 8, 0, 3, 9, 8, 6, 0, 2, 7, 4, 9, 8, 0, 4, 8, 9, 5, 9, 9, 5, 2, 4, 5, 1, 5, 2, 1, 8, 2, 7, 2, 7, 2, 7, 6, 0, 1, 9, 5, 2, 3, 4, 6, 1, 3, 0, 2, 8, 5, 0, 2, 1, 6, 1, 7, 3, 7, 8, 1, 6, 6, 9, 0, 5, 7, 7, 3
Offset: 0

Views

Author

Rick L. Shepherd, Aug 03 2014

Keywords

Comments

A triangle of maximal area inside a circle is necessarily an inscribed equilateral triangle. This constant is the ratio of the triangle's area to the circle's area. In general, the ratio of an arbitrary triangle's area to the area of its unique Steiner ellipse, which has the least area of any circumscribed ellipse (an equilateral triangle's Steiner ellipse is a circle).
Also the probability that the distance between 2 randomly selected points within a circle will be larger than the radius. - Amiram Eldar, Mar 03 2019

Examples

			0.4134966715663440371334948737347270810480...
		

Crossrefs

Programs

  • Maple
    Digits:=100: evalf(3*sqrt(3)/(4*Pi)); # Wesley Ivan Hurt, Aug 03 2014
  • Mathematica
    Flatten[RealDigits[3 Sqrt[3]/(4 Pi), 10, 100, -1]] (* Wesley Ivan Hurt, Aug 03 2014 *)
  • PARI
    default(realprecision, 120);
    3*sqrt(3)/(4*Pi)

Formula

3*sqrt(3)/(4*Pi) = 3*A002194/(4*A000796).
Equals A093604^2. - Hugo Pfoertner, May 18 2024

A308716 Decimal expansion of 2*sinh(Pi/2)/Pi.

Original entry on oeis.org

1, 4, 6, 5, 0, 5, 2, 3, 8, 3, 3, 3, 6, 6, 3, 4, 8, 7, 7, 6, 0, 9, 1, 7, 9, 3, 7, 4, 1, 1, 2, 6, 5, 1, 0, 0, 7, 8, 1, 9, 9, 3, 4, 2, 6, 4, 1, 6, 7, 3, 4, 0, 8, 7, 1, 8, 3, 9, 5, 9, 0, 9, 1, 2, 3, 2, 5, 3, 9, 7, 3, 8, 5, 9, 5, 3, 6, 8, 7, 2, 1, 6, 5, 9, 9, 2, 8, 8, 7, 4, 2, 8, 7, 1, 0, 7, 5, 8, 6, 0, 0, 1, 9, 5, 1, 8, 7, 3, 4, 1, 8, 3, 0, 4, 3, 1, 5, 6, 9, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 19 2019

Keywords

Examples

			1.465052383336634877609179374112651007819934264167...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2 Sinh[Pi/2]/Pi, 10, 120][[1]]
  • PARI
    2*sinh(Pi/2)/Pi \\ Michel Marcus, Jun 20 2019

Formula

Equals Product_{k>=1} (1 + 1/(4*k^2)).
Equals Product_{k>=1} (1 + 1/A016742(k)).
Equals binomial(0, i/2), where i is the imaginary unit. - Amiram Eldar, Nov 25 2020

A091400 a(n) = Product_{ odd primes p | n } (1 + Legendre(-1,p) ).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2, 0
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2004

Keywords

Examples

			G.f. = x + x^2 + x^4 + 2*x^5 + x^8 + 2*x^10 + 2*x^13 + x^16 + 2*x^17 + 2*x^20 + ...
		

References

  • Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (2) (but without the restriction that a(4k) = 0).

Crossrefs

Programs

  • Maple
    with(numtheory): A091400 := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := 1; for i from 1 to nops(t1) do if t1[i][1] > 2 then t2 := t2*(1+legendre(-1,t1[i][1])); fi; od: t2; end;
    with(numtheory): seq(mul(1+legendre(-1,p),p in select(isprime, divisors(n) minus {2})),n=1..105); # Peter Luschny, Apr 20 2016
  • Mathematica
    Legendre[-1, p_] := Which[p==2, 0, Mod[p, 4]==1, 1, True, -1]; a[1] = 1; a[n_] := Times @@ (Legendre[-1, #] + 1&) /@ FactorInteger[n][[All, 1]]; Array[a, 105] (* Jean-François Alcover, Dec 01 2015 *)
    Join[{1},Table[Product[1+JacobiSymbol[-1,p],{p,Complement[FactorInteger[n][[All, 1]], {2}]}], {n,2,105}]] (* Peter Luschny, Apr 20 2016 *)
  • PARI
    {a(n)=if(n<1,0,sumdiv(n,d,(-1)^bigomega(d)*moebius(d)*if(d%2,(-1)^(d\2),0)))} \\ Benoit Cloitre, Apr 17 2016

Formula

Here we use the definition that Legendre(-1, 2) = 0, Legendre(-1, p) = 1 if p == 1 mod 4, = -1 if p == 3 mod 4. This is Shimura's definition, which is different from Maple's.
a(n) is multiplicative with:
a(2^e) = 1 for e >= 0,
a(p^e) = 0 if p == 3 (mod 4) for e > 0,
a(p^e) = 2 if p == 1 (mod 4) for e > 0.
(corrected by Werner Schulte, Dec 12 2020).
a(2*n) = a(n). a(3*n) = a(4*n + 3) = 0.
a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n).
a(n) = Sum_{d|n} b(d)*(-1)^bigomega(d)*moebius(d) where b(2n)=0 and b(2n+1)=(-1)^n. - Benoit Cloitre, Apr 17 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2/Pi = 0.636619... (A060294). - Amiram Eldar, Oct 11 2022

Extensions

Definition clarified by Peter Luschny, Apr 20 2016

A154956 Pierce expansion of 2/Pi.

Original entry on oeis.org

1, 2, 3, 5, 10, 71, 868, 1788, 7455, 44266, 54626, 74153, 224166, 390471, 1489304, 3737961, 22277163, 37201631, 113275744, 165029426, 2642368758, 3362202939, 5191046363, 8438525012, 36226438506, 40174126779, 125336047846, 531802867080, 599020778171
Offset: 0

Views

Author

Jaume Oliver Lafont, Jan 18 2009

Keywords

Examples

			1 - 1/2(1 - 1/3(1 - 1/5(1 - 1/10(1 - 1/71)))) = 2/(355/113).
		

Crossrefs

Cf. A006283 (1/Pi), A061233 (4 - Pi).
Cf. A060294 (decimal expansion of 2/Pi). - R. J. Mathar, Jan 21 2009

Programs

  • Maple
    Digits := 300: Pierce := proc(x) local resid,a,i,an ; resid := x ; a := [] ; for i from 1 do an := floor(1./resid) ; a := [op(a),an] ; resid := evalf(1.-an*resid) ; if ilog10( mul(i,i=a)) > 0.7*Digits then break ; fi ; od: RETURN(a) ; end: a060294 := evalf(2/Pi) ; Pierce(a060294) ; # R. J. Mathar, Jan 21 2009
  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2/Pi, 7!], 50] (* G. C. Greubel, Nov 13 2016 *)
  • PARI
    A154956(N=99)={localprec(N); my(c=2/Pi, d=c+c/10^N, a=[1\c]); while(a[#a]==1\d&&c=1-c*a[#a], d=1-d*a[#a]; a=concat(a, 1\c)); a[^-1]}  \\ The optional argument is the precision used, approx. equal to the total number of digits in the result. - M. F. Hasler, Jul 04 2016

Extensions

More terms from R. J. Mathar, Jan 21 2009
Offset in b-file corrected by N. J. A. Sloane, Aug 31 2009

A232247 Decimal expansion of the arctan of 2/Pi.

Original entry on oeis.org

5, 6, 6, 9, 1, 1, 5, 0, 4, 9, 4, 1, 0, 0, 9, 4, 0, 5, 0, 8, 2, 8, 9, 7, 7, 4, 6, 7, 2, 2, 6, 1, 9, 1, 5, 3, 8, 0, 6, 4, 8, 0, 2, 3, 9, 0, 9, 2, 6, 8, 2, 3, 3, 5, 7, 5, 7, 7, 5, 9, 4, 7, 2, 0, 4, 5, 8, 9, 3, 0, 1, 1, 7, 5, 9, 7, 0, 9, 1, 8, 2, 7, 5, 3, 1, 0
Offset: 0

Views

Author

Bruno Berselli, Nov 21 2013

Keywords

Examples

			0.56691150494100940508289774672261915380648023909268233575775947204589...
		

Crossrefs

Programs

  • Maple
    evalf(arctan(2/Pi));
  • Mathematica
    RealDigits[ArcTan[2/Pi], 10, 90][[1]]
  • PARI
    atan(2/Pi) \\ Charles R Greathouse IV, Mar 24 2021

Formula

Equals A019669 - A232182.
Equals Sum_{k>=0} (-1)^k*(2/Pi)^(1+2*k)/(1+2*k).
Previous Showing 11-20 of 58 results. Next