cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A238691 a(n) = A190339(n)/A224911(n).

Original entry on oeis.org

1, 2, 3, 15, 15, 21, 1155, 165, 2145, 51051, 255255, 440895, 440895, 969, 111435, 248834355, 248834355, 2927463, 5898837945, 44352165, 1641030105, 8563193457, 42815967285, 80047243185, 1360803134145, 32898537309, 7731156267615, 1028243783592795, 1028243783592795, 375840831244263
Offset: 0

Views

Author

Paul Curtz, Mar 03 2014

Keywords

Comments

Are non-repeated terms of A224911(n) (2,3,5,11,17,...) A124588(n+1)?
Are repeated terms of A224911(n) (7,13,19,23,31,37,...) A049591(n+1)? At that sequence, Benoit Cloitre mentions a link to the Bernoulli numbers.
Greatest primes dividing a(n): 1, 2, 3, 5, 5, 7, 11, 11, 13, 17, 17, 19, 19, 19, 23, 29, 29, 29, ... = b(n). It appears that b(n) is A224911(n) with A008578(n), ancient primes, instead of A000040(n).
Hence c(n) = 2, 6, 15, 35, ... = 2, followed by A006094(n+1).

Examples

			a(0)=2/2=1, a(1)=6/3=2, a(2)=15/5=3, a(3)=a(4)=105/7=15, ... .
		

Crossrefs

Cf. A060308.

Programs

  • Mathematica
    nmax = 40; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; (#/FactorInteger[#][[-1, 1]])& /@ Denominator[Diagonal[diff]]

Extensions

a(16)-a(25) from Jean-François Alcover, Mar 03 2014

A081259 a(n) is the smallest k such that C(3n,n) divides k!.

Original entry on oeis.org

2, 5, 7, 11, 13, 17, 19, 23, 23, 29, 31, 31, 37, 41, 43, 47, 47, 53, 53, 59, 61, 61, 67, 71, 73, 73, 79, 83, 83, 89, 89, 89, 97, 101, 103, 107, 109, 113, 113, 113, 113, 113, 127, 131, 131, 137, 139, 139, 139, 149, 151, 151, 157, 157, 163, 167, 167, 173, 173, 179, 181
Offset: 1

Views

Author

Benoit Cloitre, Apr 20 2003

Keywords

Comments

a(n) is the largest prime < 3n. More generally the smallest k such that C(mn,n) divides k! is the largest prime < mn.

Crossrefs

Programs

  • Mathematica
    NextPrime[3Range[70],-1] (* Harvey P. Dale, Oct 20 2011 *)
  • PARI
    a(n)=if(n<0,0,s=1; while(k!%binomial(3*n,n)>0,k++); k)

Formula

a(n) = A151799(3n). - R. J. Mathar, Jul 18 2015

A118753 First prime after 4n. Smallest prime >= 4*n. Bisection of A060264.

Original entry on oeis.org

2, 5, 11, 13, 17, 23, 29, 29, 37, 37, 41, 47, 53, 53, 59, 61, 67, 71, 73, 79, 83, 89, 89, 97, 97, 101, 107, 109, 113, 127, 127, 127, 131, 137, 137, 149, 149, 149, 157, 157, 163, 167, 173, 173, 179, 181, 191, 191, 193, 197, 211, 211, 211, 223, 223, 223, 227, 229, 233
Offset: 0

Views

Author

Jonathan Vos Post, Apr 29 2006

Keywords

Comments

Analogous to A060264 First prime after 2n; A118751 First prime after 3n.

Crossrefs

Programs

  • Maple
    seq(nextprime(4*k),k=0..100); # Robert Israel, Dec 25 2017
  • Mathematica
    NextPrime/@(4Range[0,60]) (* Harvey P. Dale, Nov 14 2021 *)

Formula

a(n) = min{A008586(n)+k such that k>0 and A008586(n)+k in A000040}.

A118755 Smallest prime >= 6*n.

Original entry on oeis.org

2, 7, 13, 19, 29, 31, 37, 43, 53, 59, 61, 67, 73, 79, 89, 97, 97, 103, 109, 127, 127, 127, 137, 139, 149, 151, 157, 163, 173, 179, 181, 191, 193, 199, 211, 211, 223, 223, 229, 239, 241, 251, 257, 263, 269, 271, 277, 283, 293, 307, 307
Offset: 0

Views

Author

Jonathan Vos Post, Apr 29 2006

Keywords

Crossrefs

A002476 is a subsequence.

Programs

  • Mathematica
    Prime[1+PrimePi[6Range[0,50]]] (* T. D. Noe, Nov 15 2006 *)
    NextPrime[6*Range[0,50]] (* Harvey P. Dale, Sep 05 2015 *)
  • PARI
    a(n) = nextprime(6*n); \\ Michel Marcus, Feb 13 2021

Formula

a(n) = A007918(A008588(n)). - Michel Marcus, Feb 13 2021

Extensions

Corrected by T. D. Noe, Nov 15 2006

A308754 a(0) = 0, a(n) = a(n-1) + 1 if 2*n + 3 is prime, otherwise a(n) = a(n-1).

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 7, 8, 9, 9, 9, 10, 10, 11, 12, 12, 13, 13, 13, 14, 14, 14, 15, 16, 16, 16, 17, 17, 18, 19, 19, 19, 20, 20, 21, 21, 21, 22, 22, 22, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 28, 28, 28, 28, 28, 28, 29, 29, 30, 30, 30, 31
Offset: 0

Views

Author

Keywords

Comments

It appears that A000040(a(n)) ~ 2*n as n tends to infinity. (See Mar 12 2012 note from Vladimir Shevelev in A060308.)

Examples

			a(0) = 0 (by definition).
a(1) = 1 = a(0) + 1, because 2*1 + 3 is prime;
a(2) = 2 = a(1) + 1, because 2*2 + 3 is prime;
a(3) = 2 = a(2),     because 2*3 + 3 is not prime;
a(4) = 3 = a(3) + 1, because 2*4 + 3 is prime.
		

Crossrefs

Programs

  • BASIC
    ' p(n) contains the prime sequence except for 2. p(0)=3
    ' output in the a(n) sequence for 0 <= n <= maxterm
    ip = -1
    For n = 0 To maxterm
       If (2 * n + 3) = p(ip+1) Then
          ip = ip + 1
       End If
       a(n) = ip
    Next n
    
  • Magma
    [#PrimesUpTo(2*n + 4) - 2: n in [0..80] ]; // Vincenzo Librandi, Aug 01 2019
  • Mathematica
    a[0] = 0; a[n_] := a[n] = a[n - 1] + Boole@PrimeQ[2 n + 3]; Array[a, 100, 0] (* Amiram Eldar, Jul 06 2019 *)

Formula

a(n) = a(n-1) + A101264(n+1), n > 0.
a(n) = A000720(2 * (n+2)) - 2.
a(n) = A099801(n+1) - 2.
a(n) = n - A210469(n+2).
A000040(a(n) + 2) = A060265(n+2).
A000040(a(n) + 2) = A060308(n+2).
A000040(a(n) + 2) = A085090(n+2), if 2*n + 3 is prime, otherwise 0.

A335046 Maximal common prime of two Goldbach partitions of 2n and 2(n+1) or zero (if common prime does not exist).

Original entry on oeis.org

0, 3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 19, 29, 31, 31, 0, 37, 37, 41, 43, 43, 47, 47, 43, 53, 53, 43, 59, 61, 61, 0, 67, 67, 71, 73, 73, 0, 79, 79, 83, 83, 79, 89, 89, 79, 0, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 109, 0, 113, 109, 0, 127, 127, 131, 131, 127, 137, 139, 139
Offset: 2

Views

Author

Ivan N. Ianakiev, May 21 2020

Keywords

Examples

			4 = 2+2 and 6 = 3+3. Since those are the only available Goldbach partitions and they have no common prime, a(4/2) = a(2) = 0. 14 = 3+11 and 16 = 5+11, so a(14/2) = a(7) = 11.
		

Crossrefs

Programs

  • Maple
    S:= proc(n) option remember; {seq((h-> `if`(
          andmap(isprime, h), h, [])[])([n+i, n-i]), i=0..n-2)}
        end:
    a:= n-> max(0, (S(n) intersect S(n+1))[]):
    seq(a(n), n=2..80);  # Alois P. Heinz, Jun 20 2020
  • Mathematica
    d[n_]:=Flatten[Cases[FrobeniusSolve[{1,1},2*n],{?PrimeQ}]]
    e[n_]:=Intersection[d[n],d[n+1]]; f[n_]:=If[e[n]=={},0,Max[e[n]]];
    f/@Range[2,100]

A357253 a(n) is the largest prime < 6*n.

Original entry on oeis.org

5, 11, 17, 23, 29, 31, 41, 47, 53, 59, 61, 71, 73, 83, 89, 89, 101, 107, 113, 113, 113, 131, 137, 139, 149, 151, 157, 167, 173, 179, 181, 191, 197, 199, 199, 211, 211, 227, 233, 239, 241, 251, 257, 263, 269, 271, 281, 283, 293, 293, 293, 311, 317, 317, 317, 331, 337, 347, 353
Offset: 1

Views

Author

Michel Marcus, Sep 20 2022

Keywords

Comments

Largest prime that can be obtained after n rolls of a fair 6-sided die.

Examples

			a(11) = 61 as the largest prime <= 6*11 = 66 is 61; each of 62, 63, 64, 65 and 66 are not prime. - _David A. Corneth_, Sep 20 2022
		

Crossrefs

Programs

  • Maple
    a:= n-> prevprime(6*n):
    seq(a(n), n=1..60);  # Alois P. Heinz, Sep 20 2022
  • Mathematica
    a[n_] := NextPrime[6*n, -1]; Array[a, 60] (* Amiram Eldar, Sep 20 2022 *)
  • PARI
    a(n) = precprime(6*n);
    
  • Python
    from sympy import prevprime
    def A357253(n): return prevprime(6*n) # Chai Wah Wu, Sep 20 2022

Formula

a(n) = A007917(A008588(n)).
a(n) = A151799(A008588(n)), since 6*n is never prime.

A234316 Irregular triangle T, read by rows, such that row n lists the larger parts of the Goldbach partitions of 2n (in decreasing order).

Original entry on oeis.org

2, 3, 5, 7, 5, 7, 11, 7, 13, 11, 13, 11, 17, 13, 19, 17, 11, 19, 17, 13, 23, 19, 13, 23, 17, 23, 19, 17, 29, 19, 31, 29, 23, 17, 31, 29, 23, 19, 31, 19, 37, 29, 23, 37, 31, 29, 23, 41, 37, 31, 43, 41, 29, 23, 43, 41, 37, 31, 29, 47, 43, 37, 31, 47, 41, 29, 47, 43, 41, 37, 31
Offset: 2

Views

Author

Wesley Ivan Hurt, Dec 23 2013

Keywords

Comments

Row n has first entry A060308(n), and length A045917(n). If Goldbach's conjecture is true, then each row of the triangle contains at least 1 entry.
This is the companion irregular triangle to A184995. See the first formula. - Wolfdieter Lang, May 14 2016

Examples

			The irregular triangle T(n,i) begins:
   n | 2*n | i = 1   2   3   4   5   6 ...
  ---+-----+------------------------------
   2 |   4 |     2
   3 |   6 |     3
   4 |   8 |     5
   5 |  10 |     7   5
   6 |  12 |     7
   7 |  14 |    11   7
   8 |  16 |    13  11
   9 |  18 |    13  11
  10 |  20 |    17  13
  11 |  22 |    19  17  11
  12 |  24 |    19  17  13
  13 |  26 |    23  19  13
  14 |  28 |    23  17
  15 |  30 |    23  19  17
  16 |  32 |    29  19
  17 |  34 |    31  29  23  17
  18 |  36 |    31  29  23  19
  19 |  38 |    31  19
  20 |  40 |    37  29  23
  21 |  42 |    37  31  29  23
  22 |  44 |    41  37  31
  23 |  46 |    43  41  29  23
  24 |  48 |    43  41  37  31  29
  25 |  50 |    47  43  37  31
  26 |  52 |    47  41  29
  27 |  54 |    47  43  41  37  31
  28 |  56 |    53  43  37
  29 |  58 |    53  47  41  29
  30 |  60 |    53  47  43  41  37  31
 ... Reformatted and extended. - _Wolfdieter Lang_, May 14 2016
		

Crossrefs

Programs

  • Mathematica
    Table[First /@ DeleteDuplicates@ Map[Sort[{#, 2 n - #}, Greater] &, Select[2 n - Prime@ Range@ PrimePi[2 n], PrimeQ]], {n, 30}] // Flatten (* Michael De Vlieger, May 15 2016 *)
  • PARI
    for(n=2, 18, forprime(p=2, n, if(isprime(2*n-p), print1(2*n-p", ")))) \\ Ralf Stephan, Dec 26 2013

Formula

T(n,i) = 2n - A184995(n,i).
T(n,i) = n + A182138(n,i). - Ralf Stephan, Dec 26 2013

A238737 a(n) = 2*n+2 - A224911(n).

Original entry on oeis.org

0, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 5, 1, 1, 3, 5, 1, 3, 1, 1, 3, 1, 3, 5, 1, 3, 5, 1, 1, 3, 5, 1, 3, 1, 1, 3, 5, 1, 3, 1, 3, 5, 1, 3, 5, 7, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 5, 7, 9, 11, 13, 1, 3, 1, 3, 5, 1, 1, 3, 5, 7, 9
Offset: 0

Views

Author

Paul Curtz, Mar 04 2014

Keywords

Comments

It appears that a(n+2) is successively either one 1 or a string of the odd numbers.
Conjecture: the rank of 1's is A005097(n+1). This is another link between Bernoulli numbers and primes via A190339(n).
Apparently (essentially) a duplicate of A049653. - R. J. Mathar, Mar 30 2014

Examples

			a(0)=2-2=0, a(1)=4-3=1, a(2)=6-5=1, a(3)=8-7=1, a(4)=10-7=3.
		

Crossrefs

Previous Showing 21-29 of 29 results.