A182427 Triangular numbers that can be represented as a sum of a nonzero square number and a nonzero triangular number.
10, 15, 28, 45, 55, 91, 136, 190, 210, 231, 253, 325, 378, 406, 435, 496, 561, 595, 666, 703, 741, 820, 861, 903, 946, 990, 1081, 1128, 1176, 1225, 1378, 1431, 1540, 1596, 1711, 1770, 1830, 1891, 2080, 2145, 2211, 2278, 2346, 2415, 2485, 2556, 2701, 2926, 3160, 3321
Offset: 1
Keywords
Examples
10, 15, 28 are in the sequence because 10 = 2^2 + 3*4/2 = 3^2 + 1*2/2, 15 = 3^2 + 3*4/2, 28 = 5^2 + 2*3/2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
PARI
isok(t) = {for (k=1, sqrtint(t), my(tt = t - k^2); if ((tt) && ispolygonal(tt, 3), return (1)););} lista(nn) = {for (n=1, nn, my(t = n*(n+1)/2); if (isok(t), print1(t, ", ")););} \\ Michel Marcus, Nov 25 2015
Comments