cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A254499 Amicable factorions.

Original entry on oeis.org

1, 2, 145, 871, 872, 40585, 45361, 45362
Offset: 1

Views

Author

Michel Lagneau, Jan 31 2015

Keywords

Comments

The members of a pair of numbers p and q are called amicable factorions if each is equal to the sum of the factorials of the base-10 digits of the other. The only six pairs (p,q) are (1, 1), (2, 2), (145, 145), (871,45361), (872, 45362), (40585, 40585).
Peter Kiss (1977) showed there are no further terms. - N. J. A. Sloane, Mar 17 2019

Examples

			871 and 45361 are in the sequence because:
871 => 8!+7!+1! = 40320 +5040 + 1 = 45361;
45361 => 4!+5!+3!+6!+1! = 24 + 120 + 6 + 720 + 1 = 871.
		

References

  • P. Kiss, A generalization of a problem in number theory, Math. Sem. Notes Kobe Univ., 5 (1977), no. 3, 313-317. MR 0472667 (57 #12362).

Crossrefs

A014080 and A214285 are subsets.

Programs

  • Mathematica
    Select[Range[10^6], Plus @@ (IntegerDigits[Plus @@ (IntegerDigits[ # ]!) ]!) == # &]

Formula

n such that f(f(n))=n, where f(k)=A061602(k).

A052279 Primes such that the sum of the factorials of the digits is a perfect square.

Original entry on oeis.org

17, 41, 71, 211, 433, 457, 547, 1013, 1031, 1103, 1301, 1489, 2063, 3001, 3011, 4451, 5077, 5441, 5651, 5717, 6203, 6551, 7057, 7507, 7517, 8419, 8941, 10163, 10613, 10631, 16103, 16301, 20369, 20639, 20693, 20873, 20963, 21313, 21661, 23003, 23087, 23131
Offset: 1

Views

Author

G. L. Honaker, Jr., Feb 05 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[3000]],IntegerQ[Sqrt[Total[IntegerDigits[#]!]]]&] (* Harvey P. Dale, Apr 11 2016 *)
  • PARI
    isok(n) = isprime(n) && (d = digits(n)) && issquare(sum(i=1, #d, d[i]!)); \\ Michel Marcus, Jan 06 2014

Extensions

More terms from Michel Marcus, Jan 06 2014

A093325 Numbers that are divisible by the sum of the factorials of their digits.

Original entry on oeis.org

1, 2, 10, 12, 21, 32, 104, 111, 112, 120, 145, 200, 220, 222, 224, 341, 403, 441, 1000, 1020, 1100, 1120, 1122, 1200, 1204, 1210, 1212, 1230, 1232, 1320, 1330, 2000, 2010, 2030, 2100, 2110, 2112, 2123, 2125, 2130, 2204, 2212, 2232, 2250, 2300, 2310, 2321
Offset: 1

Views

Author

Jason Earls, May 11 2004

Keywords

Examples

			104 is a term because 1!+0!+4!=26 and 104/26=4.
		

Crossrefs

Programs

  • Magma
    f:=func< n|&+[Factorial(Intseq(n)[i]):i in [1..#Intseq(n)]]>; [k:k in [1..2500]| k mod f(k) eq 0]; // Marius A. Burtea, Dec 16 2019
  • Mathematica
    seqQ[n_] := Divisible[n, Total@(Factorial /@ IntegerDigits[n])]; Select[Range[2500], seqQ] (* Amiram Eldar, Dec 16 2019 *)

A109016 Concatenate n and the sum of factorials of the digits of n.

Original entry on oeis.org

1, 11, 22, 36, 424, 5120, 6720, 75040, 840320, 9362880, 102, 112, 123, 137, 1425, 15121, 16721, 175041, 1840321, 19362881, 203, 213, 224, 238, 2426, 25122, 26722, 275042, 2840322, 29362882, 307, 317, 328, 3312, 3430, 35126, 36726, 375046
Offset: 0

Views

Author

Jason Earls, Jun 16 2005

Keywords

Examples

			a(16)=16721 because 1!+6! = 721.
		

Crossrefs

Cf. A061602.

Programs

  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n],IntegerDigits[Total[IntegerDigits[n]!]]]],{n,0,40}] (* Harvey P. Dale, Jul 13 2023 *)

A111095 n = Sum_{b} c_b*b! in the factorial base rewritten by c_b-fold repetition of b, b=1,2,3,....

Original entry on oeis.org

1, 2, 12, 22, 122, 3, 13, 23, 123, 223, 1223, 33, 133, 233, 1233, 2233, 12233, 333, 1333, 2333, 12333, 22333, 122333, 4, 14, 24, 124, 224, 1224, 34, 134, 234, 1234, 2234, 12234, 334, 1334, 2334, 12334, 22334
Offset: 1

Views

Author

Keywords

Comments

The integer n has a unique "greedy" representation in the factorial base as n = Sum_{b>=1} c_b*b!, see A007623.
The number of coefficients c_b is A084558(n).
The current sequence starts from an empty string, scans the coefficients c_b in the order b=1,2,3,..., i.e., reads A007623(n) from the least to the most significant position, and appends b c_b times to the string. The resulting string is shown in the sequence as a standard decimal number a(n).

Examples

			a(39) = 12334 with A007623(39) = 1211, because 1! + 2! + 3! + 3! + 4! = 1 + 2 + 6 + 6 + 24 = 39
		

Crossrefs

Formula

A061602(a(n)) = n. - R. J. Mathar, Oct 30 2010

Extensions

Definition and comment shortened with reference to A007623 - R. J. Mathar, Oct 30 2010

A242868 Numbers n such that sum of the factorial of digits of n is semiprime.

Original entry on oeis.org

3, 14, 15, 16, 17, 18, 22, 24, 25, 27, 28, 40, 41, 42, 50, 51, 52, 60, 61, 70, 71, 72, 80, 81, 82, 102, 104, 105, 107, 108, 112, 114, 115, 117, 118, 120, 121, 123, 125, 126, 128, 132, 140, 141, 144, 145, 146, 147, 148, 150, 151, 152, 154, 156, 157, 158, 162, 164
Offset: 1

Views

Author

K. D. Bajpai, May 24 2014

Keywords

Examples

			a(4) = 16:  1! + 6! = 1 + 720 = 721 = 7 * 103 which is semiprime.
a(9) = 25:  2! + 5! = 2 + 120 = 122 = 2 * 61 which is semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A242868:= proc() local a; a:=add( i!,i = convert((n), base, 10))(n);if bigomega(a)=2 then RETURN (n);fi; end: seq(A242868 (), n=1..300);
  • Mathematica
    Select[Range[200],PrimeOmega[Total[IntegerDigits[#]!]]==2&] (* Harvey P. Dale, Jul 30 2015 *)

A061603 a(n) = n! / {product of factorials of the digits of n}.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3628800, 39916800, 239500800, 1037836800, 3632428800, 10897286400, 29059430400, 70572902400, 158789030400, 335221286400, 1216451004088320000, 25545471085854720000, 281000181944401920000, 2154334728240414720000
Offset: 0

Views

Author

Amarnath Murthy, May 19 2001

Keywords

Comments

It can be shown that the terms obtained by the above formula are positive integers using the fact that k! divides a product of k consecutive numbers.

Examples

			a(12) = (12!) / (1!*2!) = 239500800.
		

Crossrefs

Programs

  • Mathematica
    Table[n!/Times@@(IntegerDigits[n]!),{n,0,30}] (* Harvey P. Dale, Jan 19 2017 *)
  • PARI
    a(n) = my(d = digits(n)); n!/prod(k=1, #d, d[k]!); \\ Michel Marcus, Jul 02 2018

Formula

a(n) = A000142(n)/A066459(n). - Michel Marcus, Jul 02 2018

Extensions

Corrected and extended by Vladeta Jovovic, May 19 2001

A074257 Sum of factorials of digits of n equals the largest prime factor of n.

Original entry on oeis.org

2, 12, 341, 403, 1200, 1232, 2000, 2204, 4530, 4614, 5134, 10000, 13200, 13345, 14210, 21141, 23100, 31433, 40020, 101442, 111252, 111452, 112000, 112320, 123201, 135453, 145343, 162121, 173434, 200025, 202106, 203050, 210000, 211420
Offset: 1

Views

Author

Jason Earls, Sep 20 2002

Keywords

Examples

			4614 = 2*3*769 and 4!+6!+1!+4! = 769.
		

Crossrefs

Cf. A061602.

Programs

  • Mathematica
    Select[Range[220000],FactorInteger[#][[-1,1]]==Total[IntegerDigits[#]!]&] (* Harvey P. Dale, Mar 08 2014 *)
  • PARI
    gpf(n)=if(n<2,1,my(f=factor(n)[,1]);f[#f])
    is(n)=my(d=digits(n),t=sum(i=1,#d,d[i]!));n%t==0&&isprime(t)&&gpf(n/t)<=t \\ Charles R Greathouse IV, Mar 10 2014

A084405 Primes whose sum of factorials of digits is also prime.

Original entry on oeis.org

2, 11, 13, 31, 101, 163, 313, 331, 431, 503, 613, 631, 1021, 1201, 1223, 1433, 1439, 1453, 1483, 1493, 1543, 1567, 1657, 1663, 1667, 1669, 1753, 1777, 1789, 1879, 1987, 1999, 2011, 2111, 2203, 2213, 2221, 3049, 3163, 3221, 3313, 3331, 3361, 3413, 3461, 3491
Offset: 1

Views

Author

Jason Earls, Jun 24 2003

Keywords

Examples

			a(10)=503, a prime, and 5! + 0! + 3! = 127, a prime.
		

Crossrefs

Cf. A061602.

Programs

  • Mathematica
    Select[Prime[Range[500]],PrimeQ[Total[IntegerDigits[#]!]]&] (* Harvey P. Dale, Mar 20 2016 *)
  • PARI
    {digitsumfac(n)=local(s, d); s=0; while(n>0,d=divrem(n,10); n=d[1]; s=s+d[2]!); s}
    {facp(m)=local(ct,sr); ct=0; sr=0; forprime(p=2,m, if(isprime(digitsumfac(p)),ct++; print1(p," "); sr+=(1.0/p); )); print(); print("Found: "ct" primes < "m); print("Sum of reciprocals = "sr); }
    
  • Python
    from sympy import isprime
    from math import factorial
    def f(n): return sum(factorial(int(d)) for d in str(n))
    def ok(n): return isprime(n) and isprime(f(n))
    print([k for k in range(3500) if ok(k)]) # Michael S. Branicky, Feb 11 2023

A130687 Numbers n such that a_1! + a_2! + ... + a_m! is a square number, where a_1a_2...a_m is the decimal expansion of n.

Original entry on oeis.org

1, 14, 15, 17, 22, 40, 41, 45, 50, 51, 54, 70, 71, 102, 112, 120, 121, 123, 132, 144, 156, 165, 200, 201, 203, 210, 211, 213, 230, 231, 302, 312, 320, 321, 334, 343, 404, 414, 433, 440, 441, 457, 475, 506, 516, 547, 560, 561, 574, 605, 615
Offset: 1

Views

Author

Yalcin Aktar, Jun 30 2007

Keywords

Examples

			1! + 4! = 4! + 1! = 5^2, hence 14 and 41 are in the sequence.
		

Programs

  • Maple
    A061602 := proc(n) local digs ; digs := convert(n,base,10) ; add(factorial(op(i,digs)),i=1..nops(digs)) ; end: isA130687 := proc(n) issqr(A061602(n)) ; end: for n from 1 to 3000 do if isA130687(n) then printf("%d, ",n) ; fi ; od ; # R. J. Mathar, Jul 12 2007
  • Mathematica
    Select[Range[755], IntegerQ[Sqrt[DigitCount[ # ][[10]]+Sum[DigitCount[ # ][[i]]*i!, {i, 1, 9}]]] &]

Formula

A010052(A061602(a(n)))=1. - R. J. Mathar, Jul 12 2007

Extensions

Edited by Stefan Steinerberger and R. J. Mathar, Jul 12 2007
Previous Showing 11-20 of 44 results. Next