cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A009286 a(n) = lcm(sigma(n), phi(n)).

Original entry on oeis.org

1, 3, 4, 14, 12, 12, 24, 60, 78, 36, 60, 28, 84, 24, 24, 248, 144, 78, 180, 168, 96, 180, 264, 120, 620, 84, 360, 168, 420, 72, 480, 1008, 240, 432, 48, 1092, 684, 180, 168, 720, 840, 96, 924, 420, 312, 792, 1104, 496, 798, 1860, 288, 1176, 1404, 360, 360, 120, 720, 1260
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

From Antti Karttunen, May 26 2017: (Start)
a(n) = A062354(n) / A009223(n).
a(A000040(n)) = A084921(n). - after Enrique Pérez Herrero's May 17 2012 comment in the latter sequence.
(End)

A065146 Numbers n such that the arithmetic, geometric and harmonic means of phi(n) and sigma(n) are all integers.

Original entry on oeis.org

1, 248, 264, 418, 477, 1485, 3080, 3135, 3596, 3828, 5396, 10098, 12648, 20026, 21318, 22152, 23374, 24882, 35074, 35343, 39105, 41656, 44660, 49938, 55154, 56536, 61344, 71145, 74613, 86304, 87087, 104931, 118296, 124605, 129504, 130356, 147560, 150195
Offset: 1

Views

Author

Labos Elemer, Oct 18 2001

Keywords

Examples

			n = 5396, phi(n) = 2520, sigma(n) = 10080, arithmetic mean = 6300, geometric mean = 5040, harmonic mean = 4032; 67 cases < 10^6.
		

Crossrefs

Programs

  • Mathematica
    Do[s = EulerPhi[n]*DivisorSigma[1, n]; z = (EulerPhi[n]+DivisorSigma[1, n])/2; u = h[n]; If[IntegerQ[Sqrt[s]]&&IntegerQ[z]&&IntegerQ[u], Print[n]], {n, 1, 1000000}]
  • PARI
    { n=0; for (m=1, 10^9, e=eulerphi(m); s=sigma(m); if (!issquare(e*s), next); h=(2*e*s)/(e + s); if (frac(h) != 0, next); if (frac((e + s)/2) != 0, next); write("b065146.txt", n++, " ", m); if (n==500, return) ) } \\ Harry J. Smith, Oct 12 2009

Formula

a = (phi(n)+sigma(n))/2, g = sqrt(phi(n)*sigma(n)), h = (2*phi(n)*sigma(n))/(phi(n)+sigma(n)) = g^2/a are all integers; phi() = A000010(), sigma() = A000203().

A065656 Composite numbers k such that sigma(k)*phi(k) + 2*(k+1) is a square.

Original entry on oeis.org

1169, 7777, 41111, 46097, 668167, 846817, 2107519, 3612769, 17424241, 30666527, 37526993, 56323393, 214746055, 383523857, 512376769, 1021934641, 1228492849, 1303949599, 4056001351, 7425397169, 17073544447, 17859428369, 18452226887, 46874737969, 51411954391
Offset: 1

Views

Author

Labos Elemer, Nov 12 2001

Keywords

Comments

a(n) and square root of phi(a(n))*sigma(a(n)) + 2*a(n) + 2 are close to each other: e.g., a(7) = 2107519 and this square root is 2107458.
Since (p+1)*(p-1) + 2*(p+1) = p*p + 2*p + 1 = (p+1)^2 is a square, all primes are solutions.
73362272287 and 181264312447 are also terms. - Donovan Johnson, Jul 13 2012

Examples

			k = 7777: sigma(7777) = 9792, phi(7777) = 6000 and 9792*6000 + 2*7778 = 587675556 = 7666^2.
		

Crossrefs

Programs

  • PARI
    isok(k) = { !isprime(k) && issquare(sigma(k)*eulerphi(k) + 2*(k + 1)) } \\ Harry J. Smith, Oct 26 2009

Extensions

a(9)-a(15) from Harry J. Smith, Oct 26 2009
a(16)-a(20) from Donovan Johnson, May 24 2011
a(21)-a(25) from Donovan Johnson, Jul 13 2012

A056100 a(n) = sigma(n)*phi(n) + 1 (mod n).

Original entry on oeis.org

0, 0, 0, 3, 0, 1, 0, 5, 7, 3, 0, 5, 0, 5, 13, 9, 0, 1, 0, 17, 7, 9, 0, 1, 21, 11, 19, 1, 0, 7, 0, 17, 4, 15, 33, 13, 0, 17, 19, 1, 0, 19, 0, 9, 28, 21, 0, 17, 43, 11, 10, 13, 0, 1, 21, 25, 31, 27, 0, 49, 0, 29, 28, 33, 3, 43, 0, 21, 16, 27, 0, 1, 0, 35, 11, 25, 63, 55, 0, 33, 55, 39, 0, 1
Offset: 1

Views

Author

Robert G. Wilson v, Jul 28 2000

Keywords

Comments

Note that iff p is a prime then sigma(p)*phi(p) + 1 = 0 (mod p).

References

  • George E. Andrews, "Number Theory," Dover Publ., NY, 1971, page 85.

Crossrefs

Programs

  • Mathematica
    Table[Mod[DivisorSigma[1, n]*EulerPhi[n] + 1, n], {n, 1, 100}]
  • PARI
    a(n) = (sigma(n)*eulerphi(n)+1) % n; \\ Michel Marcus, Aug 05 2025
    
  • Python
    from sympy import totient, divisor_sigma
    def A056100(n): return (totient(n)*divisor_sigma(n)+1)%n # Karl-Heinz Hofmann, Aug 12 2025

A077101 a(n) = A051612(n)*A065387(n) = sigma(n)^2-phi(n)^2, where A051612(n) = sigma(n) - phi(n) and A065387(n) = sigma(n) + phi(n).

Original entry on oeis.org

0, 8, 12, 45, 20, 140, 28, 209, 133, 308, 44, 768, 52, 540, 512, 897, 68, 1485, 76, 1700, 880, 1196, 92, 3536, 561, 1620, 1276, 2992, 116, 5120, 124, 3713, 1904, 2660, 1728, 8137, 148, 3276, 2560, 7844, 164, 9072, 172, 6656, 5508, 4700, 188, 15120, 1485
Offset: 1

Views

Author

Labos Elemer, Nov 06 2002

Keywords

Comments

If n is prime, then a(n) = 4n.

Crossrefs

Programs

Formula

a(n) = A077099(n) * A077100(n). - Antti Karttunen, May 26 2017
From Amiram Eldar, Dec 04 2023: (Start)
a(n) = A072861(n) - A127473(n).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 5*zeta(3)/2 - Product_{p prime}(1 - (2*p-1)/p^3) = (5/2)*A002117 - A065464 = 2.576892... . (End)

Extensions

Edited by Dean Hickerson, Nov 07 2002

A093827 Decimal expansion of Silverman's constant.

Original entry on oeis.org

1, 7, 8, 6, 5, 7, 6, 4, 5, 9, 3, 6, 5, 9, 2, 2, 4, 6, 3, 4, 5, 8, 5, 9, 0, 4, 7, 5, 5, 4, 1, 3, 1, 5, 7, 5, 0, 3, 1, 2, 6, 2, 1, 9, 0, 2, 3, 8, 4, 2, 4, 3, 2, 9, 4, 9, 0, 1, 0, 7, 2, 4, 9, 6, 2, 1, 4, 2, 4, 5, 2, 7, 9, 1, 3, 4, 7, 8, 6, 2, 2, 3, 7, 7, 3, 2, 6, 9, 2, 4, 3, 9, 0, 3, 2, 8, 0, 5, 6, 8, 7, 6, 9, 0, 2
Offset: 1

Views

Author

Eric W. Weisstein, Apr 16 2004

Keywords

Comments

Named after Robert D. Silverman. - Amiram Eldar, Aug 20 2020

Examples

			1.786576459365922463458590475541315750312621902384243294901...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 161.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 3, p. 182.
  • Robert D. Silverman, A Peculiar Sum, USENET sci.math.research newsgroup posting, Mar 27 1996.

Crossrefs

Programs

  • Maple
    read("transforms") ; Digits := 140 ; kmax := 450 ; tmax := kmax-10 ; 1+add(1/(p^(2*k)-p^(k-1)),k=1..kmax) : xt := subs(p=1/x,%) : xt := taylor(xt,x=0,tmax) ; L := [] ; for n from 1 to tmax-1 do L := [op(L),coeftayl(xt,x=0,n)]; end do: Le := EULERi(L) ; x := 1.0 ; for i from 2 to nops(Le) do x := x*Zeta(i)^op(i,Le) ; x := evalf(x) ; print(x) ; end do: # R. J. Mathar, Jul 28 2010
  • Mathematica
    Sum[1/(EulerPhi[n]DivisorSigma[1, n]), {n, Infinity}]
    $MaxExtraPrecision = 500; m = 500; f[p_] := 1 + Sum[1/(p^(2*k) - p^(k - 1)), {k, 1, 2*m}]; c = Rest@CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]*Range[m]; RealDigits[Exp[NSum[Indexed[c, n]*(PrimeZetaP[n])/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] (* Amiram Eldar, Aug 20 2020 *)

Formula

From Amiram Eldar, Aug 20 2020: (Start)
Equals Sum_{k>=1} 1/(phi(k)*sigma(k)) = Sum_{k>=1} 1/A062354(k).
Equals Product_{p prime} (1 + Sum_{k>=1} 1/(p^(2*k) - p^(k-1))). (End)

Extensions

37 more digits from R. J. Mathar, Jul 28 2010
More terms from Vaclav Kotesovec, Jun 13 2021

A130654 Exponent m such that 2^m = A092505(n) = A002430(n) / A046990(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Alexander Adamchuk, Jun 20 2007, Jun 23 2007

Keywords

Comments

Conjecture: A092505(n) is always a power of 2. a(n) = Log[ 2, A092505(n) ]. Note that a(n) = 0 iff n is a power of 2; or A002430(2^n) = A046990(2^n) and A092505(2^n) = 1. It appears that a(2k+1) = 1 for k>0. Note that least index k such that a(k) = n is {1, 3, 14, 60, ...} which apparently coincides with A006502(n) = {1, 3, 14, 60, 279, 1251, ...} Related to Fibonacci numbers (see Carlitz reference).
Least index k such that a(k) = n is listed in A131262(n) = {1, 3, 14, 60, 248, ...}. Conjecture: A131262(n) = Sigma(2^n)*EulerPhi(2^n) = 2^(2n) - Floor(2^n/2) = A062354(2^n). If this conjecture is true then a(1008) = 5 and a(n)<5 for all n<1008.
Positions of records indeed continue as 1, 3, 14, 60, 248, 1008, 4064, 16320, ..., strongly suggesting union of {1} and A171499. - Antti Karttunen, Jan 13 2019

Examples

			A092505(n) begins {1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 1, ...}.
Thus a(1) = Log[2,1] = 0, a(2) = Log[2,1] = 0, a(3) = Log[2,2] = 1.
		

Crossrefs

Cf. A092505 = A002430(n) / A046990(n), n>0. Cf. A002430 = Numerators in Taylor series for tan(x). Cf. A046990 = Numerators of Taylor series for log(1/cos(x)). Cf. A006502 = Related to Fibonacci numbers.
Cf. A131262 = Least index k such that A130654(k) = n. Cf. A062354 = Sigma(n)*EulerPhi(n).
Cf. also A171499.

Programs

  • Mathematica
    a=Series[ Tan[x], {x,0,256} ]; b=Series[ Log[ 1/Cos[x] ], {x,0,256}]; Table[ Log[ 2, Numerator[ SeriesCoefficient[ a, 2n-1 ] ] / Numerator[ SeriesCoefficient[ b, 2n ] ] ], {n,1,128} ]

Formula

a(n) = Log[ 2, A092505(n) ]. a(n) = Log[ 2, A002430(n) / A046990(n) ] = A007814(A092505(n)).

A015713 Numbers m such that phi(m) * sigma(m) + k^2 is not a square for any k.

Original entry on oeis.org

4, 9, 18, 49, 81, 98, 121, 162, 242, 361, 529, 722, 729, 961, 1058, 1458, 1849, 1922, 2209, 2401, 3481, 3698, 4418, 4489, 4802, 5041, 6241, 6561, 6889, 6962, 8978, 10082, 10609, 11449, 12482, 13122, 13778, 14641, 16129, 17161
Offset: 1

Views

Author

Keywords

Comments

Numbers m such that A062354(m) is in A016825. - Michel Marcus, Dec 07 2018

Crossrefs

Cf. A007814, A015710, A062354 (phi(n)*sigma(n)), A016825.

Programs

  • Mathematica
    nonSqDiffQ[n_] := Mod[n, 4] == 2; aQ[n_] := nonSqDiffQ[ EulerPhi[n] * DivisorSigma[ 1, n]]; Select[Range[20000], aQ] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    isok(n) = (sigma(n)*eulerphi(n) % 4) == 2; \\ Michel Marcus, Dec 07 2018

Formula

Conjecture: {4, p^(2*m), 2*p^(2*m), p = 4*k+3 is prime}. - Sean A. Irvine, Dec 06 2018
The conjecture is true. It can be proved using the multiplicative property of A062354(n), i.e., A062354(p^e) = p^(e-1)*(p^(e+1)-1), and that if m is a term then A007814(A062354(m)) = 1. - Amiram Eldar, Feb 11 2024

A065501 Number of conjugacy classes in the group SL(2,Z_n) (see A000056).

Original entry on oeis.org

1, 3, 7, 10, 9, 21, 11, 30, 25, 27, 15, 70, 17, 33, 63, 76, 21, 75, 23, 90, 77, 45, 27, 210, 49, 51, 79, 110, 33, 189, 35, 168, 105, 63, 99, 250, 41, 69, 119, 270, 45, 231, 47, 150, 225, 81, 51, 532, 81, 147, 147, 170, 57, 237, 135, 330, 161, 99, 63, 630, 65, 105, 275, 352, 153
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 25 2001

Keywords

Crossrefs

Programs

  • Magma
    [Nclasses(SpecialLinearGroup(2,ResidueClassRing(n))) : n in [2..50]]; // Robin Visser, Aug 06 2023

Formula

For an odd prime p : a(p) = p + 4. - Robin Visser, Aug 06 2023

Extensions

a(23) corrected and more terms from Robin Visser, Aug 06 2023

A070732 Size of largest conjugacy class in the group GL(2,Z_n).

Original entry on oeis.org

1, 3, 12, 12, 30, 36, 56, 48, 108, 90, 132, 144, 182, 168, 360, 192, 306, 324, 380, 360, 672, 396, 552, 576, 750, 546, 972, 672, 870, 1080, 992, 768, 1584, 918, 1680, 1296, 1406, 1140, 2184, 1440, 1722, 2016, 1892, 1584, 3240, 1656, 2256, 2304, 2744, 2250
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{a = 1, b = FactorInteger[n]}, While[ Length[b] > 0, a = a*(b[[1, 1]] + 1)*b[[1, 1]]^(2b[[1, 2]] - If[ OddQ[ b[[1, 1]]], 1, 2]); b = Drop[b, 1]]; a]; Table[ f[n], {n, 1, 55}]
    Table[n*Sum[d^2 MoebiusMu[n/d], {d, Divisors[n]}]/EulerPhi[2*n], {n, 1, 100}] (* Vaclav Kotesovec, Feb 01 2019 *)
    f[p_, e_] := (p + 1)*p^(2*e - If[p == 2, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]+1)*f[i,1]^(2*f[i,2] - if(f[i,1]==2,2,1)));} \\ Amiram Eldar, Nov 05 2022

Formula

Multiplicative with a(p^e) = (p+1)*p^(2e - k), k = 1 if p is odd, k = 2 if p is 2.
a(n) = A000056(n)/A000010(2*n). - Vladeta Jovovic, Dec 22 2003
From R. J. Mathar, Apr 14 2011: (Start)
Dirichlet g.f.: (2^s-1)*zeta(s-1)*zeta(s-2)/((2^s+2)*zeta(2s-2)).
Dirichlet convolution of A000082 with a signed variant of A099892. (End)
Sum_{k=1..n} a(k) ~ 7*n^3 / (2*Pi^2). - Vaclav Kotesovec, Feb 01 2019
Sum_{n>=1} 1/a(n) = (13/11) * zeta(2)^2 * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = (13/11) * A098198 * A330523 = 1.7136743536... . - Amiram Eldar, Nov 05 2022

Extensions

Edited by Robert G. Wilson v, May 20 2002
Previous Showing 11-20 of 43 results. Next