cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 53 results. Next

A381543 Numbers > 1 whose greatest prime index (A061395), number of distinct prime factors (A001221), and greatest prime multiplicity (A051903) are all equal.

Original entry on oeis.org

2, 12, 18, 36, 120, 270, 360, 540, 600, 750, 1080, 1350, 1500, 1680, 1800, 2250, 2700, 3000, 4500, 5040, 5400, 5670, 6750, 8400, 9000, 11340, 11760, 13500, 15120, 22680, 25200, 26250, 27000, 28350, 35280, 36960, 39690, 42000, 45360, 52500, 56700, 58800, 72030
Offset: 1

Views

Author

Gus Wiseman, Mar 24 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
      2: {1}
     12: {1,1,2}
     18: {1,2,2}
     36: {1,1,2,2}
    120: {1,1,1,2,3}
    270: {1,2,2,2,3}
    360: {1,1,1,2,2,3}
    540: {1,1,2,2,2,3}
    600: {1,1,1,2,3,3}
    750: {1,2,3,3,3}
   1080: {1,1,1,2,2,2,3}
   1350: {1,2,2,2,3,3}
   1500: {1,1,2,3,3,3}
   1680: {1,1,1,1,2,3,4}
   1800: {1,1,1,2,2,3,3}
		

Crossrefs

Counting partitions by the LHS gives A008284, rank statistic A061395.
Without the RHS we have A055932, counted by A000009.
Counting partitions by the RHS gives A091602, rank statistic A051903.
Counting partitions by the middle statistic gives A116608/A365676, rank stat A001221.
Without the LHS we have A212166, counted by A239964.
Without the middle statistic we have A381542, counted by A240312.
Partitions of this type are counted by A382302.
A000040 lists the primes, differences A001223.
A001222 counts prime factors, distinct A001221.
A047993 counts balanced partitions, ranks A106529.
A051903 gives greatest prime exponent, least A051904.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents partition conjugation in terms of Heinz numbers.

Programs

  • Mathematica
    Select[Range[2,1000],PrimePi[FactorInteger[#][[-1,1]]]==PrimeNu[#]==Max@@FactorInteger[#][[All,2]]&]

Formula

A061395(a(n)) = A001221(a(n)) = A051903(a(n)).

A069459 a(n) = prime(n)^n - 1.

Original entry on oeis.org

1, 8, 124, 2400, 161050, 4826808, 410338672, 16983563040, 1801152661462, 420707233300200, 25408476896404830, 6582952005840035280, 925103102315013629320, 73885357344138503765448, 12063348350820368238715342, 3876269050118516845397872320, 1271991467017507741703714391418
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 24 2002

Keywords

Comments

a(n) = A062457(n) - 1.

Examples

			a(16) = A062457(n) - 1 = A000040(16)^16 - 1 = 53^16-1 =
= 3876269050118516845397872320 =
= 2^6*3^3*5*13*17*281*232073*31129845205681.
		

Crossrefs

Programs

  • Magma
    [NthPrime(n)^n - 1: n in [1..25]]; // G. C. Greubel, Apr 22 2018
  • Mathematica
    Table[Prime[n]^n - 1, {n, 1, 25}] (* G. C. Greubel, Apr 22 2018 *)
  • PARI
    for(n=1, 25, print1(prime(n)^n - 1, ", ")) \\ G. C. Greubel, Apr 22 2018
    

A242421 Fixed points of A153212: After a(1) = 1, numbers of the form p_i1^i1 * p_i2^(i2-i1) * p_i3^(i3-i2) * ... * p_ik^(ik-i_{k-1}), where p_i's are distinct primes present in the prime factorization of n, with i1 < i2 < i3 < ... < ik, and k = A001221(n) and ik = A061395(n).

Original entry on oeis.org

1, 2, 6, 9, 30, 45, 50, 125, 210, 294, 315, 350, 441, 686, 875, 2310, 2401, 3234, 3465, 3630, 3850, 4851, 5445, 6050, 7546, 7986, 9625, 11979, 15125, 26411, 29282, 30030, 35490, 42042, 45045, 47190, 49686, 50050, 53235, 59150, 63063, 65910, 70785, 74529, 78650, 98098, 98865, 103818, 109850, 115934, 125125, 147875, 155727, 161051, 171366, 196625, 257049, 274625, 343343, 380666, 405769, 510510
Offset: 1

Views

Author

Antti Karttunen, May 16 2014

Keywords

Comments

This sequence is closed with respect to A122111, i.e., for any n, A122111(a(n)) is either the same as a(n) or some other term a(k) of the sequence.
These numbers encode partitions in whose Young diagrams all pairs of successive horizontal and vertical segments (those pairs sharing "a common convex corner") are of equal length. Cf. the example-illustration at A153212.
Note: The seventh primorial, 510510 (= A002110(7)) occurs here as a term a(62).

Examples

			2 = p_1^1 is present, as the first prime index delta and exponent are equal.
3 = p_2^1 is not present, as 1 <> 2.
6 = p_1^1 * p_2^(2-1) is present.
9 = p_2^2 is present, as 2 = 2.
30 = p_1^1 * p_2^(2-1) * p_3^(3-2) is present, as all primorials are.
50 = p_1^1 * p_3^(3-1) is present also.
		

Crossrefs

Subsequences: A002110 (primorial numbers), A062457.

A307539 Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Original entry on oeis.org

1, 2, 9, 125, 2401, 161051, 4826809, 410338673, 16983563041, 1801152661463, 420707233300201, 25408476896404831, 6582952005840035281, 925103102315013629321, 73885357344138503765449, 12063348350820368238715343, 3876269050118516845397872321
Offset: 0

Views

Author

Gus Wiseman, Apr 13 2019

Keywords

Examples

			The square partition (4,4,4,4) has Heinz number prime(4)^4 = 7^4 = 2401.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(ithprime(i), i=[n$n]):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 03 2020
  • Mathematica
    Table[If[n==0,1,Prime[n]]^n,{n,0,10}]

Formula

a(n) = A330394(A088218(n)). - Alois P. Heinz, Mar 03 2020

A077254 a(n) = prime(n)^n mod n.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 3, 1, 8, 1, 9, 1, 2, 1, 8, 1, 8, 1, 10, 1, 13, 15, 14, 1, 7, 9, 1, 9, 22, 19, 3, 1, 26, 9, 4, 1, 9, 7, 5, 1, 15, 1, 19, 9, 17, 41, 23, 1, 31, 1, 11, 1, 29, 1, 23, 9, 8, 13, 41, 1, 39, 41, 55, 1, 53, 31, 63, 13, 8, 1, 69, 1, 2, 9, 49, 5, 16, 25, 6, 1, 80, 39, 16, 1, 29, 83
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2002

Keywords

Comments

a(A077255(n)) = 1.

Examples

			a(13) = prime(13)^13 mod 13 = 41^13 mod 13 = 925103102315013629321 mod 13 = 2.
		

Crossrefs

a(n) = A062457(n) mod n, A077256, A000040, A000027.

Programs

  • Maple
    a:= n-> ithprime(n) &^ n mod n:
    seq(a(n), n=1..100);  # Alois P. Heinz, Dec 07 2012
  • Mathematica
    Table[PowerMod[Prime[n], n, n], {n, 100}] (* Zak Seidov, Dec 07 2012 *)

A197987 a(n) = prime(n)^(n+1).

Original entry on oeis.org

4, 27, 625, 16807, 1771561, 62748517, 6975757441, 322687697779, 41426511213649, 12200509765705829, 787662783788549761, 243569224216081305397, 37929227194915558802161, 3177070365797955661914307, 566977372488557307219621121, 205442259656281392806087233013
Offset: 1

Views

Author

Bruno Berselli, Oct 20 2011

Keywords

Comments

Subsequence of A000961, A120458.
First five elements are also consecutive members of A133018. - Omar E. Pol, Oct 20 2011
Third diagonal of A319075. - Omar E. Pol, Sep 13 2018

Examples

			The fourth prime number is 7, so a(4) = 7^(4+1) = 7^5 = 16807. - _Omar E. Pol_, Oct 20 2011
		

Crossrefs

Programs

  • Magma
    [NthPrime(n)^(n+1): n in [1..16]];
  • Mathematica
    Table[Prime[n]^(n+1),{n,20}] (* Harvey P. Dale, Dec 16 2012 *)
  • PARI
    for(n=1, 16, print1(prime(n)^(n+1)", "));
    

Formula

a(n) = A000040(n)^(n+1). - Omar E. Pol, Oct 20 2011

A381632 Numbers such that (greatest prime exponent) = (sum of distinct prime indices).

Original entry on oeis.org

2, 9, 24, 54, 72, 80, 108, 125, 216, 224, 400, 704, 960, 1215, 1250, 1568, 1664, 2000, 2401, 2500, 2688, 2880, 4352, 4800, 5000, 5103, 6075, 7290, 7744, 8064, 8448, 8640, 8960, 9375, 9728, 10000, 10976, 14400, 14580, 18816, 19968, 21632, 23552, 24000, 24057
Offset: 1

Views

Author

Gus Wiseman, Mar 24 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
      2: {1}
      9: {2,2}
     24: {1,1,1,2}
     54: {1,2,2,2}
     72: {1,1,1,2,2}
     80: {1,1,1,1,3}
    108: {1,1,2,2,2}
    125: {3,3,3}
    216: {1,1,1,2,2,2}
    224: {1,1,1,1,1,4}
    400: {1,1,1,1,3,3}
    704: {1,1,1,1,1,1,5}
    960: {1,1,1,1,1,1,2,3}
		

Crossrefs

For (length) instead of (sum of distinct) we have A000961.
Including number of parts gives A062457 (degenerate).
Counting partitions by the LHS gives A091602, rank statistic A051903.
Counting partitions by the RHS gives A116861, rank statistic A066328.
Partitions of this type are counted by A381079.
A001222 counts prime factors, distinct A001221.
A047993 counts partitions with max part = length, ranks A106529.
A051903 gives greatest prime exponent, least A051904.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, complement A351293.
A239964 counts partitions with max multiplicity = length, ranks A212166.
A240312 counts partitions with max = max multiplicity, ranks A381542.
A382302 counts partitions with max = max multiplicity = distinct length, ranks A381543.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max@@Last/@FactorInteger[#]==Total[Union[prix[#]]]&]

Formula

A051903(a(n)) = A066328(a(n)).

A118672 Numbers divisible by prime(i)^i for some i.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114, 116, 117, 118, 120
Offset: 1

Views

Author

Keywords

Comments

Any multiple of an element of this sequence is in the sequence. The primitive elements of this sequence are A062457.
The asymptotic density of this sequence is 1 - Product_{k>=1} (1 - 1/prime(k)^k) = 0.55929756713969708790... - Amiram Eldar, Apr 06 2021

Crossrefs

Complement of A325128.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    S:= {}:
    for i from 1 do
      v:= ithprime(i)^i;
      if v > N then break fi;
      S:= S union {seq(j,j=v..N,v)};
    od:
    sort(convert(S,list)); # Robert Israel, Mar 27 2018
  • Mathematica
    seq[max_] := Module[{s = {}, p = 2, i = 1, q = 2}, While[q < max, s = Join[s, Range[q, max, q]]; p = NextPrime[p]; i++; q = p^i]; Union[s]]; seq[120] (* Amiram Eldar, Apr 06 2021 *)

Extensions

An incorrect g.f. was deleted by N. J. A. Sloane, Sep 13 2009

A262207 a(n) = prime(n)^n mod n^n.

Original entry on oeis.org

0, 1, 17, 97, 1676, 21241, 214259, 5020449, 34808102, 7233300201, 46070142226, 7806783217105, 165239209697109, 1608006723911113, 48560388990668468, 4867006141797699265, 530779430908845468654, 18442832496573633213385
Offset: 1

Views

Author

Altug Alkan, Sep 15 2015

Keywords

Comments

Inspired by A002380, A067602, A138654.
a(3), a(4), a(7) and a(48) are prime numbers.
There are no further prime numbers up to a(1000). - Harvey P. Dale, Jun 15 2025

Examples

			For n = 1, a(n) = prime(1)^1 mod 1^1 = 2^1 mod 1 = 2 mod 1 = 0.
For n = 2, a(n) = prime(2)^2 mod 2^2 = 3^2 mod 4 = 9 mod 4 = 1.
For n = 3, a(n) = prime(3)^3 mod 3^3 = 5^3 mod 27 = 125 mod 27 = 17.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[Prime[n]^n, n^n], {n, 18}] (* Michael De Vlieger, Sep 15 2015 *)
    Table[PowerMod[Prime[n],n,n^n],{n,20}] (* Harvey P. Dale, Jun 15 2025 *)
  • PARI
    a(n) = (prime(n)^n) % (n^n);
    vector(18, n, a(n))

Formula

a(n) = A062457(n) mod A000312(n). - Michel Marcus, Sep 15 2015

A291140 Sum of the n-th powers of the first n primes.

Original entry on oeis.org

2, 13, 160, 3123, 181258, 6732437, 493478344, 24995572327, 2255433009730, 470444892889497, 38714638073629150, 7749166585021832891, 1203906832960860262108, 121893712541593098356317, 17161342484454585041813494
Offset: 1

Views

Author

Vojtech Strnad, Aug 18 2017

Keywords

Examples

			a(3) = 2^3 + 3^3 + 5^3 = 160.
		

Crossrefs

Programs

  • Maple
    f:= n -> add(ithprime(i)^n,i=1..n):
    map(f, [$1..20]); # Robert Israel, Aug 20 2017
  • Mathematica
    Table[Total[Prime[Range@ n]^n], {n, 15}] (* Michael De Vlieger, Aug 19 2017 *)
  • PARI
    a(n) = sum(i=1, n, prime(i)^n) \\ Felix Fröhlich, Aug 18 2017

Formula

a(n) = prime(1)^n + prime(2)^n + ... + prime(n)^n.
Previous Showing 31-40 of 53 results. Next