A004126
a(n) = n*(7*n^2 - 1)/6.
Original entry on oeis.org
0, 1, 9, 31, 74, 145, 251, 399, 596, 849, 1165, 1551, 2014, 2561, 3199, 3935, 4776, 5729, 6801, 7999, 9330, 10801, 12419, 14191, 16124, 18225, 20501, 22959, 25606, 28449, 31495, 34751, 38224, 41921, 45849, 50015, 54426, 59089, 64011
Offset: 0
Albert D. Rich (Albert_Rich(AT)msn.com)
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
[n*(7*n^2-1)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
-
seq(binomial(2*n+1,3)-binomial(n+1,3), n=0..38); # Zerinvary Lajos, Jan 21 2007
-
Table[n (7 n^2 - 1)/6, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
-
makelist(n*(7*n^2-1)/6,n,0,30); /* Martin Ettl, Jan 08 2013 */
-
vector(100, n, n--; n*(7*n^2 - 1)/6) \\ Altug Alkan, Oct 06 2015
A063522
a(n) = n*(5*n^2 - 3)/2.
Original entry on oeis.org
0, 1, 17, 63, 154, 305, 531, 847, 1268, 1809, 2485, 3311, 4302, 5473, 6839, 8415, 10216, 12257, 14553, 17119, 19970, 23121, 26587, 30383, 34524, 39025, 43901, 49167, 54838, 60929, 67455, 74431, 81872, 89793, 98209, 107135, 116586, 126577, 137123, 148239, 159940
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
(1/12)*t*(n^3 - n) + n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
[n*(5*n^2 -3)/2: n in [0..30]]; // G. C. Greubel, May 02 2018
-
lst={};Do[AppendTo[lst, LegendreP[3, n]], {n, 10^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
CoefficientList[Series[x*(1 + 13*x + x^2)/(1-x)^4, {x, 0, 50}], x] (* G. C. Greubel, Sep 01 2017 *)
LinearRecurrence[{4,-6,4,-1},{0,1,17,63},40] (* Harvey P. Dale, Sep 06 2023 *)
-
a(n) = { n*(5*n^2 - 3)/2 } \\ Harry J. Smith, Aug 25 2009
A004467
a(n) = n*(11*n^2 - 5)/6.
Original entry on oeis.org
0, 1, 13, 47, 114, 225, 391, 623, 932, 1329, 1825, 2431, 3158, 4017, 5019, 6175, 7496, 8993, 10677, 12559, 14650, 16961, 19503, 22287, 25324, 28625, 32201, 36063, 40222, 44689, 49475, 54591, 60048
Offset: 0
Albert D. Rich (Albert_Rich(AT)msn.com)
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
[n*(11*n^2-5)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
-
Table[n(11n^2-5)/6,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,1,13,47},80] (* Harvey P. Dale, Sep 22 2013 *)
-
a(n)=n*(11*n^2-5)/6 \\ Charles R Greathouse IV, Sep 28 2011
A062025
a(n) = n*(13*n^2 - 7)/6.
Original entry on oeis.org
0, 1, 15, 55, 134, 265, 461, 735, 1100, 1569, 2155, 2871, 3730, 4745, 5929, 7295, 8856, 10625, 12615, 14839, 17310, 20041, 23045, 26335, 29924, 33825, 38051, 42615, 47530, 52809, 58465, 64511, 70960, 77825, 85119, 92855, 101046, 109705, 118845, 128479, 138620, 149281
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
A063523
a(n) = n*(8*n^2 - 5)/3.
Original entry on oeis.org
0, 1, 18, 67, 164, 325, 566, 903, 1352, 1929, 2650, 3531, 4588, 5837, 7294, 8975, 10896, 13073, 15522, 18259, 21300, 24661, 28358, 32407, 36824, 41625, 46826, 52443, 58492, 64989, 71950, 79391, 87328, 95777, 104754, 114275, 124356, 135013, 146262, 158119, 170600
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
Table[n(8n^2-5)/3,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,1,18,67},81] (* or *) CoefficientList[ Series[ (x+14 x^2+x^3)/(x-1)^4,{x,0,80}],x] (* Harvey P. Dale, Jul 11 2011 *)
-
a(n) = n*(8*n^2 - 5)/3 \\ Harry J. Smith, Aug 25 2009
A100188
Polar structured meta-anti-diamond numbers, the n-th number from a polar structured n-gonal anti-diamond number sequence.
Original entry on oeis.org
1, 6, 27, 84, 205, 426, 791, 1352, 2169, 3310, 4851, 6876, 9477, 12754, 16815, 21776, 27761, 34902, 43339, 53220, 64701, 77946, 93127, 110424, 130025, 152126, 176931, 204652, 235509, 269730, 307551, 349216
Offset: 1
James A. Record (james.record(AT)gmail.com), Nov 07 2004
There are no 1- or 2-gonal anti-diamonds, so 1 and (2n+2) are the first and second terms since all the sequences begin as such.
-
[(1/6)*(2*n^4-2*n^2+6*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
-
Table[(2n^4-2n^2+6n)/6,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1}, {1,6,27,84,205},40] (* Harvey P. Dale, May 11 2016 *)
-
vector(40, n, (n^4 -n^2 +3*n)/3) \\ G. C. Greubel, Nov 08 2018
A166343
Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+12*x+x^2)/(1-x)^4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 27, 27, 1, 1, 58, 162, 58, 1, 1, 121, 718, 718, 121, 1, 1, 248, 2759, 5744, 2759, 248, 1, 1, 503, 9765, 36771, 36771, 9765, 503, 1, 1, 1014, 32816, 205674, 367710, 205674, 32816, 1014, 1, 1, 2037, 106560, 1052408, 3072594, 3072594, 1052408, 106560, 2037, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 27, 27, 1;
1, 58, 162, 58, 1;
1, 121, 718, 718, 121, 1;
1, 248, 2759, 5744, 2759, 248, 1;
1, 503, 9765, 36771, 36771, 9765, 503, 1;
1, 1014, 32816, 205674, 367710, 205674, 32816, 1014, 1;
1, 2037, 106560, 1052408, 3072594, 3072594, 1052408, 106560, 2037, 1;
- Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
-
(* First program *)
p[x_, 1]:= x/(1-x)^2;
p[x_, 2]:= x*(1+x)/(1-x)^3;
p[x_, 3]:= x*(1+12*x+x^2)/(1-x)^4;
p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]
Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten
(* Second program *)
b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];
t[n_, k_, m_]:= t[n,k,m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}];
T[n_, k_, m_]:= T[n,k,m]= If[k==1, 1, t[n-1,k,m] - t[n-1,k-1,m]];
Table[T[n,k,4], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)
-
def b(n,k,m):
if (n<2): return 1
elif (k==0): return 0
else: return k^(n-1)*((m+3)*k^2 - m)/3
@CachedFunction
def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) )
def A166343(n,k): return 1 if (k==1) else t(n-1,k,4) - t(n-1,k-1,4)
flatten([[A166343(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022
A245826
Triangle read by rows: T(m,n) is the Szeged index of the grid graph P_m X P_n (1 <= n <= m).
Original entry on oeis.org
0, 1, 16, 4, 59, 216, 10, 144, 526, 1280, 20, 285, 1040, 2530, 5000, 35, 496, 1809, 4400, 8695, 15120, 56, 791, 2884, 7014, 13860, 24101, 38416, 84, 1184, 4316, 10496, 20740, 36064, 57484, 86016, 120, 1689, 6156, 14970, 29580, 51435, 81984, 122676, 174960, 165, 2320, 8455, 20560, 40625, 70640, 112595, 168480, 240285, 330000
Offset: 1
T(2,2) = 16 because P_2 X P_2 is the square C_4 and each of its 4 edges contributes 2*2=4 to its Szeged index.
Triangle starts:
0;
1,16;
4,59,216;
10,144,526,1280;
20,285,1040,2530,5000;
-
a245826 n k = n * k * (2 * n^2 * k^2 - n^2 - k^2) `div` 6
a245826_row n = map (a245826 n) [1..n]
a245826_tabl = map a245826_row [1..]
-- Reinhard Zumkeller, Aug 07 2014
-
T:=proc(m,n) options operator, arrow: (1/6)*m*n*(2*m^2*n^2-m^2-n^2) end proc: for m to 12 do seq(T(m, n), n = 1 .. m) end do; # yields sequence in triangular form
-
T[m_, n_] := (1/6)*m*n*(2*m^2*n^2 - m^2 - n^2); Table[T[m, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Feb 09 2018 *)
A100186
Structured heptagonal anti-diamond numbers (vertex structure 7).
Original entry on oeis.org
1, 16, 67, 176, 365, 656, 1071, 1632, 2361, 3280, 4411, 5776, 7397, 9296, 11495, 14016, 16881, 20112, 23731, 27760, 32221, 37136, 42527, 48416, 54825, 61776, 69291, 77392, 86101, 95440, 105431, 116096
Offset: 1
James A. Record (james.record(AT)gmail.com), Nov 07 2004
Cf.
A063521 = alternate vertex;
A100188 = structured anti-diamonds;
A100145 for more on structured numbers.
-
[(1/6)*(22*n^3-24*n^2+8*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
-
Table[(22*n^3 - 24*n^2 + 8*n)/6, {n,1,40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 16, 67, 176}, 40] (* G. C. Greubel, Nov 08 2018 *)
-
vector(40, n, (22*n^3 -24*n^2 +8*n)/6) \\ G. C. Greubel, Nov 08 2018
A245827
Szeged index of the grid graph P_3 X P_n.
Original entry on oeis.org
4, 59, 216, 526, 1040, 1809, 2884, 4316, 6156, 8455, 11264, 14634, 18616, 23261, 28620, 34744, 41684, 49491, 58216, 67910, 78624, 90409, 103316, 117396, 132700, 149279, 167184, 186466, 207176, 229365, 253084, 278384, 305316, 333931, 364280, 396414, 430384, 466241, 504036, 543820
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- S. Klavzar, A. Rajapakse, I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett., 9, 1996, 45-49.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[(1/2)*n*(17*n^2 - 9): n in [1..40]]; // Vincenzo Librandi, Aug 07 2014
-
a := proc (n) options operator, arrow: (1/2)*n*(17*n^2-9) end proc: seq(a(n), n = 1 .. 40);
-
CoefficientList[Series[(4 x^2 + 43 x + 4)/(x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2014 *)
LinearRecurrence[{4,-6,4,-1},{4,59,216,526},40] (* Harvey P. Dale, Oct 21 2017 *)
-
Vec(x*(4*x^2+43*x+4)/(x-1)^4 + O(x^100)) \\ Colin Barker, Aug 07 2014
Comments