cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 240 results. Next

A299200 Number of twice-partitions whose domain is the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 15, 4, 22, 3, 10, 7, 30, 2, 9, 11, 8, 5, 42, 6, 56, 1, 14, 15, 15, 4, 77, 22, 22, 3, 101, 10, 135, 7, 12, 30, 176, 2, 25, 9, 30, 11, 231, 8, 21, 5, 44, 42, 297, 6, 385, 56, 20, 1, 33, 14, 490, 15, 60, 15, 627, 4
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(15) = 6 twice-partitions: (3)(2), (3)(11), (21)(2), (21)(11), (111)(2), (111)(11).
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat):
    a:= n-> mul(numbpart(pi(i[1]))^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..82);  # Alois P. Heinz, Jan 14 2021
  • Mathematica
    Table[Times@@Cases[FactorInteger[n],{p_,k_}:>PartitionsP[PrimePi[p]]^k],{n,100}]
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = numbpart(primepi(f[k, 1]));); factorback(f);} \\ Michel Marcus, Feb 26 2018

Formula

Multiplicative with a(prime(n)) = A000041(n).

A279784 Twice partitioned numbers where the latter partitions are constant.

Original entry on oeis.org

1, 1, 3, 5, 12, 18, 40, 60, 121, 186, 344, 524, 955, 1432, 2484, 3756, 6352, 9493, 15750, 23414, 38128, 56513, 90406, 133312, 211194, 309657, 484214, 708267, 1097159, 1597290, 2454245, 3560444, 5430091, 7854174, 11894335, 17151394, 25838413, 37145198, 55648059
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2016

Keywords

Comments

Also number of ways to choose a divisor of each part of an integer partition of n.

Examples

			The a(4)=12 twice-partitions are:
((4)), ((3)(1)), ((2)(2)), ((22)),
((2)(1)(1)), ((2)(11)), ((11)(2)),
((1)(1)(1)(1)), ((11)(1)(1)), ((11)(11)), ((111)(1)), ((1111)).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1)+`if`(i>n, 0, numtheory[tau](i)*b(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 20 2016
  • Mathematica
    nn=20;CoefficientList[Series[Product[1/(1-DivisorSigma[0,n]x^n),{n,nn}],{x,0,nn}],x]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} d(j)^k*x^(j*k)/k), where d(j) is the number of the divisors of j (A000005). - Ilya Gutkovskiy, Jul 17 2018
From Vaclav Kotesovec, Jul 28 2018: (Start)
a(n) ~ c * 2^(n/2), where
c = 203.986136154799274492709451797084688042886818134781591... if n is even and
c = 201.491703180375661735217350021245093454724452720559762... if n is odd.
In closed form, a(n) ~ ((2 + sqrt(2)) * Product_{k>=3} (1/(1 - tau(k) / 2^(k/2))) + (-1)^n * (2 - sqrt(2)) * Product_{k>=3} (1/(1 - (-1)^k * tau(k) / 2^(k/2)))) * 2^(n/2 - 1), where tau() is A000005. (End)

A279787 Twice-partitioned numbers where the first partition is constant.

Original entry on oeis.org

1, 1, 3, 4, 10, 8, 29, 16, 64, 58, 124, 57, 469, 102, 489, 763, 1597, 298, 3858, 491, 8942, 6355, 6187, 1256, 59076, 18766, 20830, 49694, 167078, 4566, 481186, 6843, 752128, 362907, 231592, 1597802, 5951007, 21638, 790404, 2655810, 25274798, 44584, 40898731
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2016

Keywords

Examples

			The a(4)=10 twice-partitions are:
((4)), ((31)), ((22)), ((211)), ((1111)),
((2)(2)), ((2)(11)), ((11)(2)), ((11)(11)),
((1)(1)(1)(1)).
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat):
    a:= proc(n) option remember; `if`(n=0, 1,
          add(numbpart(n/d)^d, d=divisors(n)))
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Dec 20 2016
  • Mathematica
    nn=20;Table[DivisorSum[n,Power[PartitionsP[#],n/#]&],{n,nn}]
  • PARI
    a(n)=if(n==0, 1, sumdiv(n, d, numbpart(n/d)^d)) \\ Andrew Howroyd, Aug 26 2018

Formula

a(n) = Sum_{d|n} A000041(n/d)^d for n > 0. - Andrew Howroyd, Aug 26 2018

A304961 Expansion of Product_{k>=1} (1 + 2^(k-1)*x^k).

Original entry on oeis.org

1, 1, 2, 6, 12, 32, 72, 176, 384, 960, 2112, 4992, 11264, 26112, 58368, 136192, 301056, 688128, 1548288, 3489792, 7766016, 17596416, 38993920, 87293952, 194248704, 432537600, 957349888, 2132803584, 4699717632, 10406068224, 23001563136, 50683969536, 111434268672, 245819768832
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Number of compositions of partitions of n into distinct parts. a(3) = 6: 3, 21, 12, 111, 2|1, 11|1. - Alois P. Heinz, Sep 16 2019
Also the number of ways to split a composition of n into contiguous subsequences with strictly decreasing sums. - Gus Wiseman, Jul 13 2020
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1, g(n) = (-1) * 2^(n-1). - Seiichi Manyama, Aug 22 2020

Examples

			From _Gus Wiseman_, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 12 splittings:
  ()  (1)  (2)    (3)        (4)
           (1,1)  (1,2)      (1,3)
                  (2,1)      (2,2)
                  (1,1,1)    (3,1)
                  (2),(1)    (1,1,2)
                  (1,1),(1)  (1,2,1)
                             (2,1,1)
                             (3),(1)
                             (1,1,1,1)
                             (1,2),(1)
                             (2,1),(1)
                             (1,1,1),(1)
(End)
		

Crossrefs

The non-strict version is A075900.
Starting with a reversed partition gives A323583.
Starting with a partition gives A336134.
Partitions of partitions are A001970.
Splittings with equal sums are A074854.
Splittings of compositions are A133494.
Splittings with distinct sums are A336127.

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[Product[(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    N=40; x='x+O('x^N); Vec(prod(k=1, N, 1+2^(k-1)*x^k)) \\ Seiichi Manyama, Aug 22 2020

Formula

G.f.: Product_{k>=1} (1 + A011782(k)*x^k).
a(n) ~ 2^n * exp(2*sqrt(-polylog(2, -1/2)*n)) * (-polylog(2, -1/2))^(1/4) / (sqrt(6*Pi) * n^(3/4)). - Vaclav Kotesovec, Sep 19 2019

A281118 a(1)=1, a(n>1) = number of tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 6, 1, 2, 2, 12, 1, 6, 1, 6, 2, 2, 1, 20, 2, 2, 4, 6, 1, 8, 1, 32, 2, 2, 2, 28, 1, 2, 2, 20, 1, 8, 1, 6, 6, 2, 1, 76, 2, 6, 2, 6, 1, 20, 2, 20, 2, 2, 1, 38, 1, 2, 6, 112, 2, 8, 1, 6, 2, 8, 1, 116, 1, 2, 6, 6, 2, 8, 1, 76, 12, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2017

Keywords

Comments

A tree-factorization of n>=2 is either (case 1) the number n or (case 2) a sequence of two or more tree-factorizations, one of each part of a weakly increasing factorization of n. These are rooted plane trees and the ordering of branches is important. For example, {{2,2},9}, {2,{2,9}}, {{2,2},{3,3}}, {6,{2,3}}, and {{2,3},6} are distinct tree-factorizations of 36, but {9,{2,2}}, {{2,9},2}, and {{3,3},{2,2}} are not.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(30)=8 tree-factorizations are 30, 2*15, 2*(3*5), 3*10, 3*(2*5), 5*6, 5*(2*3), 2*3*5.
		

Crossrefs

Programs

  • Mathematica
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    treefacs[n_]:=If[n<=1,{{}},Prepend[Join@@Function[q,Tuples[treefacs/@q]]/@DeleteCases[postfacs[n],{n}],n]];
    Table[Length[treefacs[n]],{n,2,83}]
  • PARI
    seq(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j] += w[k]^e*v[i]))); w} \\ Andrew Howroyd, Nov 18 2018

Formula

a(p^n) = A289501(n) for prime p. - Andrew Howroyd, Nov 18 2018

A357982 Replace prime(k) with A000009(k) in the prime factorization of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 4, 2, 2, 1, 5, 1, 6, 2, 2, 3, 8, 1, 4, 4, 1, 2, 10, 2, 12, 1, 3, 5, 4, 1, 15, 6, 4, 2, 18, 2, 22, 3, 2, 8, 27, 1, 4, 4, 5, 4, 32, 1, 6, 2, 6, 10, 38, 2, 46, 12, 2, 1, 8, 3, 54, 5, 8, 4, 64, 1, 76, 15, 4, 6, 6, 4, 89, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. This sequence gives the number of ways to choose a strict partition of each prime index of n.
The indices i, where a(i) = 1, form A003586, and the indices j, where a(j) > 1, form A059485. - Ivan N. Ianakiev, Oct 27 2022

Examples

			The a(121) = 9 twice-partitions are: (5)(5), (5)(41), (5)(32), (41)(5), (41)(41), (41)(32), (32)(5), (32)(41), (32)(32).
		

Crossrefs

Other multiplicative sequences: A003961, A357852, A064988, A064989, A357980.
The non-strict version is A299200.
A horizontal version is A357978, non-strict A357977.
A000040 lists the primes.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Mathematica
    Table[Times@@Cases[FactorInteger[n],{p_,k_}:>PartitionsQ[PrimePi[p]]^k],{n,100}]
  • PARI
    f9(n) = polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n)), n); \\ A000009
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = f9(primepi(f[k,1]))); factorback(f); \\ Michel Marcus, Oct 26 2022

A358914 Number of twice-partitions of n into distinct strict partitions.

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 13, 20, 32, 51, 83, 130, 206, 320, 496, 759, 1171, 1786, 2714, 4104, 6193, 9286, 13920, 20737, 30865, 45721, 67632, 99683, 146604, 214865, 314782, 459136, 668867, 972425, 1410458, 2040894, 2950839, 4253713, 6123836, 8801349, 12627079
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2022

Keywords

Comments

A twice-partition of n (A063834) is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(6) = 13 twice-partitions:
  ((1))  ((2))  ((3))     ((4))      ((5))      ((6))
                ((21))    ((31))     ((32))     ((42))
                ((2)(1))  ((3)(1))   ((41))     ((51))
                          ((21)(1))  ((3)(2))   ((321))
                                     ((4)(1))   ((4)(2))
                                     ((21)(2))  ((5)(1))
                                     ((31)(1))  ((21)(3))
                                                ((31)(2))
                                                ((3)(21))
                                                ((32)(1))
                                                ((41)(1))
                                                ((3)(2)(1))
                                                ((21)(2)(1))
		

Crossrefs

The unordered version is A050342, non-strict A261049.
This is the distinct case of A270995.
The case of strictly decreasing sums is A279785.
The case of constant sums is A279791.
For distinct instead of weakly decreasing sums we have A336343.
This is the twice-partition case of A358913.
A001970 counts multiset partitions of integer partitions.
A055887 counts sequences of partitions.
A063834 counts twice-partitions.
A330462 counts set systems by total sum and length.
A358830 counts twice-partitions with distinct lengths.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],UnsameQ@@#&&And@@UnsameQ@@@#&]],{n,0,10}]
  • PARI
    seq(n,k)={my(u=Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))-1)); Vec(prod(k=1, n, my(c=u[k]); sum(j=0, min(c,n\k), x^(j*k)*c!/(c-j)!,  O(x*x^n))))} \\ Andrew Howroyd, Dec 31 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022

A218482 First differences of the binomial transform of the partition numbers (A000041).

Original entry on oeis.org

1, 1, 3, 8, 21, 54, 137, 344, 856, 2113, 5179, 12614, 30548, 73595, 176455, 421215, 1001388, 2371678, 5597245, 13166069, 30873728, 72185937, 168313391, 391428622, 908058205, 2101629502, 4853215947, 11183551059, 25718677187, 59030344851, 135237134812, 309274516740
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2012

Keywords

Comments

a(n) = A103446(n) for n>=1; here a(0) is set to 1 in accordance with the definition and other important generating functions.
From Gus Wiseman, Dec 12 2022: (Start)
Also the number of sequences of compositions (A133494) with weakly decreasing lengths and total sum n. For example, the a(0) = 1 through a(3) = 8 sequences are:
() ((1)) ((2)) ((3))
((11)) ((12))
((1)(1)) ((21))
((111))
((1)(2))
((2)(1))
((11)(1))
((1)(1)(1))
The case of constant lengths is A101509.
The case of strictly decreasing lengths is A129519.
The case of sequences of partitions is A141199.
The case of twice-partitions is A358831.
(End)

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + 54*x^5 + 137*x^6 + 344*x^7 +...
The g.f. equals the product:
A(x) = (1-x)/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *...
and also equals the series:
A(x) = 1  +  x*(1-x)/((1-x)-x)^2  +  x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2  +  x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2  +  x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
          add(combinat[numbpart](k)*binomial(n,k), k=0..n)
        end:
    a:= n-> b(n)-b(n-1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 19 2014
  • Mathematica
    Flatten[{1, Table[Sum[Binomial[n-1,k]*PartitionsP[k+1],{k,0,n-1}],{n,1,30}]}] (* Vaclav Kotesovec, Jun 25 2015 *)
  • PARI
    {a(n)=sum(k=0,n,(binomial(n,k)-if(n>0,binomial(n-1,k)))*numbpart(k))}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1-x)^k/((1-x)^k-X^k)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^m*(1-x)^(m*(m-1)/2)/prod(k=1,m,((1-x)^k - X^k))),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^(m^2)*(1-X)^m/prod(k=1,m,((1-x)^k - x^k)^2)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,x^m/((1-x)^m-X^m)/m)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,sigma(m)*x^m/(1-X)^m/m)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1 + x^k/(1-X)^k)^valuation(2*k,2)),n)}

Formula

G.f.: Product_{n>=1} (1-x)^n / ((1-x)^n - x^n).
G.f.: Sum_{n>=0} x^n * (1-x)^(n*(n-1)/2) / Product_{k=1..n} ((1-x)^k - x^k).
G.f.: Sum_{n>=0} x^(n^2) * (1-x)^n / Product_{k=1..n} ((1-x)^k - x^k)^2.
G.f.: exp( Sum_{n>=1} x^n/((1-x)^n - x^n) / n ).
G.f.: exp( Sum_{n>=1} sigma(n) * x^n/(1-x)^n / n ), where sigma(n) is the sum of divisors of n (A000203).
G.f.: Product_{n>=1} (1 + x^n/(1-x)^n)^A001511(n), where 2^A001511(n) is the highest power of 2 that divides 2*n.
a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-2) / (n*sqrt(3)). - Vaclav Kotesovec, Jun 25 2015

A296122 Number of twice-partitions of n with no repeated partitions.

Original entry on oeis.org

1, 1, 2, 5, 10, 20, 40, 77, 157, 285, 552, 1018, 1921, 3484, 6436, 11622, 21082, 37550, 67681, 119318, 211792, 372003, 653496, 1137185, 1986234, 3429650, 5935970, 10205907, 17537684, 29958671, 51189932, 86967755, 147759421, 249850696, 422123392, 710495901
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

a(n) is the number of sequences of distinct integer partitions whose sums are weakly decreasing and add up to n.

Examples

			The a(4) = 10 twice-partitions: (4), (31), (22), (211), (1111), (3)(1), (21)(1), (111)(1), (2)(11), (11)(2).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(j!*
          binomial(combinat[numbpart](i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Dec 06 2017
  • Mathematica
    Table[Length[Join@@Table[Select[Tuples[IntegerPartitions/@p],UnsameQ@@#&],{p,IntegerPartitions[n]}]],{n,15}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[j!*
         Binomial[PartitionsP[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    a[n_] := b[n, n];
    a /@ Range[0, 40] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Extensions

a(15)-a(34) from Robert G. Wilson v, Dec 06 2017

A299201 Number of twice-partitions whose composite is the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 5, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 3, 4, 1, 6, 1, 7, 2, 2, 2, 11, 1, 2, 2, 8, 1, 5, 1, 4, 4, 2, 1, 16, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 13, 1, 2, 5, 11, 2, 5, 1, 4, 2, 6, 1, 19, 1, 2, 4, 4, 2, 5, 1, 13, 5, 2, 1, 13, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(36) = 11 twice-partitions:
  (2211),
  (22)(11), (211)(2), (221)(1), (21)(21),
  (2)(2)(11), (2)(11)(2), (11)(2)(2), (22)(1)(1), (21)(2)(1),
  (2)(2)(1)(1).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];
    tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];
    Table[Length[Select[tris,Sort[Join@@#,Greater]===y&]],{y,ptns}]
Previous Showing 31-40 of 240 results. Next