cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 241 results. Next

A302243 Total weight of the n-th twice-odd-factored multiset partition.

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 2, 2, 1, 3, 3, 2, 2, 3, 2, 1, 2, 3, 3, 3, 1, 2, 3, 2, 4, 2, 4, 2, 4, 1, 3, 4, 3, 1, 3, 3, 2, 3, 3, 2, 4, 1, 2, 3, 4, 4, 2, 4, 2, 3, 2, 3, 4, 3, 1, 4, 3, 3, 4, 3, 2, 2, 3, 1, 3, 5, 5, 4, 2, 2, 3, 3, 3, 5, 2, 4, 3, 2, 1, 5, 4, 2, 3, 2, 4, 5, 4, 4
Offset: 0

Views

Author

Gus Wiseman, Apr 03 2018

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers. The n-th twice-odd-factored multiset partition is constructed by factoring 2n + 1 into prime numbers and then factoring each prime index into prime numbers and taking their prime indices.

Examples

			Sequence of multiset partitions begins: (), ((1)), ((2)), ((11)), ((1)(1)), ((3)), ((12)), ((1)(2)), ((4)), ((111)), ((1)(11)), ((22)), ((2)(2)), ((1)(1)(1)), ((13)), ((5)), ((1)(3)), ((2)(11)), ((112)), ((1)(12)), ((6)).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Sum[PrimeOmega[k],{k,primeMS[2n-1]}],{n,100}]

Formula

a(n) = A302242(2n + 1).

A141199 Number of hierarchical ordered partitions of partitions.

Original entry on oeis.org

1, 1, 3, 7, 17, 38, 87, 191, 421, 911, 1963, 4186, 8885, 18724, 39284, 82005, 170521, 353214, 729290, 1501184, 3081869, 6311404, 12896983, 26301515, 53541702, 108815626, 220824295, 447524559, 905850001, 1831526719
Offset: 0

Views

Author

Thomas Wieder, Jun 13 2008, Jun 29 2008, Jul 28 2008

Keywords

Comments

Consider the "ordered partitions of partitions" as described in A055887. They are produced by introducing separators (a term used by J. Riordan) between the parts of a partition. If a partition has P parts, then it is possible to introduce 1, 2, ... P-1 separators. Let "|" denote such a separator. We just append 1,2,...,P-1 separators to each integer partition of n and subsequently form all permutation of the resulting list (which is composed of parts and separators).
There are some rules: If we do not append a separator, then we do not perform any permutation. Furthermore, we do not accept permutations which have a dangling separator in front of the integer parts or past them. E.g. the permutations [|,1,2,3] and [1,2,3,|] are forbidden. Furthermore, sequences of separators as "|,|" are forbidden.
Now we impose a further restriction on the permutations. Consider the elements between two separators. We call their number "occupation number". We just request that the occupation number of a ordered partition is monotonically decreasing (if we start from the left to the right of a permutation written in our notation). If we interpret a separator as a level, then we can speak of a hierarchy. E.g. we do not count [1,|,2,3,|,4] as a hierarchy, but we accept [1,2|,3,4] as a hierarchy. We thus speak of "hierarchically ordered partitions of partitions" for this sequence.
With the generating function f := z -> 1/(mul(1-z^i/mul(1-z^j,j=1..i), i=1..25)); we get the asymptotic expansion using the command equivalent (f(z),z,n);
The result is 3.788561346*exp(-n)^(-log(2)) + O(1/n*exp(-n)^(-log(2))). Let fas := n -> 3.788562346*exp(-n)^(-log(2)); then for n=60 we get fas(60)/A141199(60)= .4367915009e19/4344507472742893655 = 1.005387846.
In short, a(n) is the number of finite sequences of integer partitions with weakly decreasing lengths and total sum n. The case of twice-partitions is A358831. A version choosing compositions is A218482. The strictly decreasing case is A358836. For ordered set partitions we have A005651. For weakly decreasing bigomega see A358335. - Gus Wiseman, Dec 05 2022

Examples

			n=1:
[1]
-------------------------
n=2:
[1, 1],
[1, "|", 1],
[2]
-------------------------
n=3:
[1, 2],
[1, "|", 1, "|", 1],
[1, 1, 1],
[3],
[2, "|", 1],
[1, 1, "|", 1],
[1, "|", 2]
-------------------------
n=4:
[1, 1, 1, "|", 1],
[1, 1, "|", 1, 1],
[2, 2],
[1, 3],
[1, 1, 1, 1],
[1, 1, 2],
[4],
[1, "|", 1, "|", 1, "|", 1],
[1, 2, "|", 1],
[1, 1, "|", 2],
[1, 1, "|", 1, "|", 1],
[2, "|", 1, "|", 1],
[1, "|", 2, "|", 1],
[1, "|", 1, "|", 2],
[1, "|", 3],
[3, "|", 1],
[2, "|", 2].
		

Crossrefs

Programs

  • Maple
    A Maple program to generate these "hierarchically ordered partitions of partitions" is available on request.
    An asymptotic expansion can be found using the generating function given by Vladeta Jovovic. For that purpose we use the Maple program "equivalent" from Bruno Salvy (http://ago.inria.fr/libraries/libraries.html).
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k/prod(j=1, k, 1-x^j))) \\ Seiichi Manyama, Jan 18 2022

Formula

G.f.: 1/Product_{i>=1} (1-x^i/Product_{j=1..i} (1-x^j)). - Vladeta Jovovic, Jul 16 2008

Extensions

More terms from Vladeta Jovovic, Jul 16 2008
a(0)=1 prepended by Seiichi Manyama, Jan 18 2022

A358836 Number of multiset partitions of integer partitions of n with all distinct block sizes.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 28, 51, 92, 164, 289, 504, 871, 1493, 2539, 4290, 7201, 12017, 19939, 32911, 54044, 88330, 143709, 232817, 375640, 603755, 966816, 1542776, 2453536, 3889338, 6146126, 9683279, 15211881, 23830271, 37230720, 58015116, 90174847, 139820368, 216286593
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2022

Keywords

Comments

Also the number of integer compositions of n whose leaders of maximal weakly decreasing runs are strictly increasing. For example, the composition (1,2,2,1,3,1,4,1) has maximal weakly decreasing runs ((1),(2,2,1),(3,1),(4,1)), with leaders (1,2,3,4), so is counted under a(15). - Gus Wiseman, Aug 21 2024

Examples

			The a(1) = 1 through a(5) = 15 multiset partitions:
  {1}  {2}    {3}        {4}          {5}
       {1,1}  {1,2}      {1,3}        {1,4}
              {1,1,1}    {2,2}        {2,3}
              {1},{1,1}  {1,1,2}      {1,1,3}
                         {1,1,1,1}    {1,2,2}
                         {1},{1,2}    {1,1,1,2}
                         {2},{1,1}    {1},{1,3}
                         {1},{1,1,1}  {1},{2,2}
                                      {2},{1,2}
                                      {3},{1,1}
                                      {1,1,1,1,1}
                                      {1},{1,1,2}
                                      {2},{1,1,1}
                                      {1},{1,1,1,1}
                                      {1,1},{1,1,1}
From _Gus Wiseman_, Aug 21 2024: (Start)
The a(0) = 1 through a(5) = 15 compositions whose leaders of maximal weakly decreasing runs are strictly increasing:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (122)
                        (1111)  (131)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
(End)
		

Crossrefs

The version for set partitions is A007837.
For sums instead of sizes we have A271619.
For constant instead of distinct sizes we have A319066.
These multiset partitions are ranked by A326533.
For odd instead of distinct sizes we have A356932.
The version for twice-partitions is A358830.
The case of distinct sums also is A358832.
Ranked by positions of strictly increasing rows in A374740, opposite A374629.
A001970 counts multiset partitions of integer partitions.
A011782 counts compositions.
A063834 counts twice-partitions, strict A296122.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],UnsameQ@@Length/@#&]],{n,0,10}]
    (* second program *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Less@@First/@Split[#,GreaterEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 21 2024 *)
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, 1 + polcoef(g, k, y) + O(x*x^n)))} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: Product_{k>=1} (1 + [y^k]P(x,y)) where P(x,y) = 1/Product_{k>=1} (1 - y*x^k). - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 31 2022

A279786 Twice-partitioned numbers where the first partition is strict and the latter partitions are constant.

Original entry on oeis.org

1, 1, 2, 4, 5, 9, 16, 22, 28, 49, 69, 94, 138, 187, 257, 374, 479, 639, 886, 1146, 1577, 2103, 2676, 3534, 4620, 5910, 7542, 9816, 12650, 15986, 20538, 25740, 32632, 41442, 51383, 64771, 81281, 100729, 125041, 155557, 192641, 236810, 293593, 359880, 441276
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2016

Keywords

Examples

			The a(5)=9 twice-partitions are:
((5)), ((4)(1)), ((3)(2)), ((3)(11)), ((22)(1)),
((111)(2)), ((111)(11)), ((1111)(1)), ((11111)).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n>i*(i+1)/2, 0, `if`(n=0, 1, b(n, i-1)+
          `if`(i>n, 0, numtheory[tau](i)*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..70);  # Alois P. Heinz, Dec 20 2016
  • Mathematica
    nn=20;CoefficientList[Series[Product[(1+DivisorSigma[0,n]x^n),{n,nn}],{x,0,nn}],x]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*d(j)^k*x^(j*k)/k), where d(j) is the number of the divisors of j (A000005). - Ilya Gutkovskiy, Jul 17 2018

A316245 Number of ways to split an integer partition of n into consecutive subsequences with weakly decreasing sums.

Original entry on oeis.org

1, 1, 3, 6, 14, 25, 52, 89, 167, 279, 486, 786, 1322, 2069, 3326, 5128, 8004, 12055, 18384, 27203, 40588, 59186, 86645, 124583, 179784, 255111, 362767, 509319, 715422, 993681, 1380793, 1899630, 2613064, 3564177, 4857631, 6572314, 8884973, 11930363, 16002853
Offset: 0

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Examples

			The a(4) = 14 split partitions:
  (4)
  (31)
  (22)
  (211)
  (3)(1)
  (2)(2)
  (1111)
  (21)(1)
  (2)(11)
  (111)(1)
  (11)(11)
  (2)(1)(1)
  (11)(1)(1)
  (1)(1)(1)(1)
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Sum[Length[Select[comps[y],OrderedQ[Total/@#,GreaterEqual]&]],{y,IntegerPartitions[n]}],{n,10}]
  • PARI
    a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f, self()(r,min(m,t),t,0,0)) + self()(r,m-1,s,t,0) + if(t+m<=s, self()(r-m,min(m,r-m),s,t+m,1)))); recurse(n,n,n,0,0)} \\ Andrew Howroyd, Jan 18 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 18 2024

A318949 Number of ways to write n as an orderless product of orderless sums.

Original entry on oeis.org

1, 2, 3, 8, 7, 17, 15, 36, 36, 56, 56, 123, 101, 165, 197, 310, 297, 490, 490, 767, 837, 1114, 1255, 1925, 1986, 2638, 3110, 4108, 4565, 6201, 6842, 9043, 10311, 12904, 14988, 19398, 21637, 26995, 31488, 39180, 44583, 55418, 63261, 77627, 89914, 108068, 124754
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2018

Keywords

Examples

			The a(6) = 17 ways:
  (6)              (2)*(3)
  (3+3)            (2)*(2+1)
  (4+2)            (2)*(1+1+1)
  (5+1)            (1+1)*(3)
  (2+2+2)          (1+1)*(2+1)
  (3+2+1)          (1+1)*(1+1+1)
  (4+1+1)
  (2+2+1+1)
  (3+1+1+1)
  (2+1+1+1+1)
  (1+1+1+1+1+1)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    prodsums[n_]:=Union[Sort/@Join@@Table[Tuples[IntegerPartitions/@fac],{fac,facs[n]}]];
    Table[Length[prodsums[n]],{n,30}]
  • PARI
    MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
    seq(n)={MultEulerT(vector(n, n, numbpart(n)))} \\ Andrew Howroyd, Oct 26 2019

Formula

Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^p(k), where p(k) = number of partitions of k (A000041). - Ilya Gutkovskiy, Oct 26 2019

A279789 Number of ways to choose a constant partition of each part of a constant partition of n.

Original entry on oeis.org

1, 1, 3, 3, 8, 3, 17, 3, 30, 12, 41, 3, 130, 3, 137, 45, 359, 3, 656, 3, 1306, 141, 2057, 3, 5446, 36, 8201, 544, 18610, 3, 34969, 3, 72385, 2061, 131081, 165, 290362, 3, 524297, 8205, 1109206, 3, 2130073, 3, 4371490, 33594, 8388617, 3, 17445321, 132, 33556496
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2016

Keywords

Comments

Also number of ways to choose a divisor d|n and then a sequence of n/d divisors of d.

Examples

			The a(6)=17 twice-constant partitions are:
((6)),
((3)(3)), ((33)),
((3)(111)), ((111)(3)),
((2)(2)(2)), ((222)),
((2)(2)(11)), ((2)(11)(2)), ((11)(2)(2)),
((2)(11)(11)), ((11)(2)(11)), ((11)(11)(2)),
((1)(1)(1)(1)(1)(1)), ((11)(11)(11)), ((111)(111)), ((111111)).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1,
          add(tau(n/d)^d, d=divisors(n)))
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Dec 20 2016
  • Mathematica
    nn=20;Table[DivisorSum[n,Power[DivisorSigma[0,#],n/#]&],{n,nn}]
  • PARI
    a(n)=if(n==0, 1, sumdiv(n, d, numdiv(n/d)^d)) \\ Andrew Howroyd, Aug 26 2018

Formula

a(n) = Sum_{d|n} tau(n/d)^d for n > 0. - Andrew Howroyd, Aug 26 2018
G.f.: 1 + Sum_{k>=1} tau(k)*x^k/(1 - tau(k)*x^k). - Ilya Gutkovskiy, May 23 2019
a(n) = 3 <=> n is prime <=> n in { A000040 }. - Alois P. Heinz, May 23 2019

A317715 Number of ways to split an integer partition of n into consecutive subsequences with equal sums.

Original entry on oeis.org

1, 1, 3, 4, 9, 8, 21, 16, 39, 38, 64, 57, 146, 102, 186, 211, 352, 298, 593, 491, 906, 880, 1273, 1256, 2444, 1998, 3038, 3277, 4861, 4566, 7710, 6843, 10841, 10742, 14966, 15071, 24499, 21638, 31334, 32706, 47157, 44584, 67464, 63262, 91351, 94247, 125248
Offset: 0

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Examples

			The a(4) = 9 constant-sum split partitions:
  (4),
  (31),
  (22), (2)(2),
  (211), (2)(11),
  (1111), (11)(11), (1)(1)(1)(1).
The a(6) = 21 constant-sum split partitions:
  (6),
  (51),
  (42),
  (411),
  (33), (3)(3),
  (321), (3)(21),
  (3111), (3)(111),
  (222), (2)(2)(2),
  (2211), (2)(2)(11),
  (21111), (21)(111), (2)(11)(11),
  (111111), (111)(111), (11)(11)(11), (1)(1)(1)(1)(1)(1).
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Sum[Length[Select[comps[y],SameQ@@Total/@#&]],{y,IntegerPartitions[n]}],{n,10}]

Extensions

a(16)-a(46) from Hiroaki Yamanouchi, Oct 02 2018

A294617 Number of ways to choose a set partition of a strict integer partition of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 10, 12, 17, 24, 44, 51, 76, 98, 138, 217, 272, 366, 493, 654, 848, 1284, 1560, 2115, 2718, 3610, 4550, 6024, 8230, 10296, 13354, 17144, 21926, 27903, 35556, 44644, 59959, 73456, 94109, 117735, 150078, 185800, 235719, 290818, 365334, 467923
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2017

Keywords

Comments

From Gus Wiseman, Sep 17 2024: (Start)
Also the number of strict integer compositions of n whose leaders, obtained by splitting into maximal increasing subsequences and taking the first term of each, are decreasing. For example, the strict composition (3,6,2,1,4) has maximal increasing subsequences ((3,6),(2),(1,4)), with leaders (3,2,1), so is counted under a(16). The a(0) = 1 through a(7) = 12 compositions are:
() (1) (2) (3) (4) (5) (6) (7)
(1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (3,1) (2,3) (2,4) (2,5)
(3,2) (4,2) (3,4)
(4,1) (5,1) (4,3)
(1,2,3) (5,2)
(2,1,3) (6,1)
(2,3,1) (1,2,4)
(3,1,2) (2,1,4)
(3,2,1) (2,4,1)
(4,1,2)
(4,2,1)
(End)

Examples

			The a(6) = 10 set partitions are: {{6}}, {{1},{5}}, {{5,1}}, {{2},{4}}, {{4,2}}, {{1},{2},{3}}, {{1},{3,2}}, {{2,1},{3}}, {{3,1},{2}}, {{3,2,1}}.
		

Crossrefs

Row sums of A330460 and of A330759.
This is a strict case of A374689, weak version A189076.
A011782 counts compositions, strict A032020.
A238130, A238279, A333755 count compositions by number of runs.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, combinat[bell](t), b(n, i-1, t)+
          `if`(i>n, 0, b(n-i, min(n-i, i-1), t+1))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 07 2017
  • Mathematica
    Table[Total[BellB[Length[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,25}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n > i (i + 1)/2, 0, If[n == 0, BellB[t], b[n, i - 1, t] + If[i > n, 0, b[n - i, Min[n - i, i - 1], t + 1]]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

A279375(n) <= a(n) <= A279790(n).
G.f.: Sum_{k>=0} Bell(k) * x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 28 2020

A336127 Number of ways to split a composition of n into contiguous subsequences with different sums.

Original entry on oeis.org

1, 1, 2, 8, 16, 48, 144, 352, 896, 2432, 7168, 16896, 46080, 114688, 303104, 843776, 2080768, 5308416, 13762560, 34865152, 87818240, 241172480, 583008256, 1503657984, 3762290688, 9604956160, 23689428992, 60532195328, 156397207552, 385137770496, 967978254336
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(0) = 1 through a(4) = 16 splits:
  ()  (1)  (2)    (3)        (4)
           (1,1)  (1,2)      (1,3)
                  (2,1)      (2,2)
                  (1,1,1)    (3,1)
                  (1),(2)    (1,1,2)
                  (2),(1)    (1,2,1)
                  (1),(1,1)  (1),(3)
                  (1,1),(1)  (2,1,1)
                             (3),(1)
                             (1,1,1,1)
                             (1),(1,2)
                             (1),(2,1)
                             (1,2),(1)
                             (2,1),(1)
                             (1),(1,1,1)
                             (1,1,1),(1)
		

Crossrefs

The version with equal instead of different sums is A074854.
Starting with a strict composition gives A336128.
Starting with a partition gives A336131.
Starting with a strict partition gives A336132
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Join@@Permutations/@IntegerPartitions[n]}],{n,0,10}]

Formula

a(n) = Sum_{k=0..n} 2^(n-k) k! A008289(n,k).
Previous Showing 41-50 of 241 results. Next