cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 133 results. Next

A127661 Lengths of the infinitary aliquot sequences.

Original entry on oeis.org

2, 3, 3, 3, 3, 1, 3, 4, 3, 5, 3, 5, 3, 6, 4, 3, 3, 6, 3, 6, 4, 7, 3, 8, 3, 4, 4, 6, 3, 6, 3, 4, 5, 7, 4, 7, 3, 8, 4, 8, 3, 5, 3, 4, 5, 5, 3, 7, 3, 7, 5, 7, 3, 4, 4, 6, 4, 5, 3, 1, 3, 8, 4, 5, 4, 3, 3, 8, 5, 10, 3, 3, 3, 9, 4, 9, 4, 2, 3, 8, 3, 5, 3, 10, 4, 6, 6, 8, 3, 1, 5, 7, 5, 8, 4, 9, 3, 8, 5, 7
Offset: 1

Views

Author

Ant King, Jan 26 2007

Keywords

Comments

An infinitary aliquot sequence is defined by the map x->A049417(x)-x. The map usually terminates with a zero, but may enter cycles (if n in A127662 for example).
The length of an infinitary aliquot sequence is defined to be the length of its transient part + the length of its terminal cycle.
The value of a(840) starting the infinitary aliquot sequence 840 -> 2040 -> 4440 -> 9240 -> 25320,... is >1500. - R. J. Mathar, Oct 05 2017

Examples

			a(4)=3 because the infinitary aliquot sequence generated by 4 is 4 -> 1 -> 0 and it has length 3.
a(6) = 1 because 6 -> 6 -> 6 ->... enters a cycle after 1 term.
a(8) = 4 because 8 -> 7 -> 1 -> 0 terminates after 4 terms.
a(30) = 6 because 30 ->42 -> 54 -> 66 -> 78 -> 90 -> 90 -> 90 -> ...enters a cycle after 6 terms.
a(126)=2 because 126 -> 114 -> 126 enters a cycle after 2 terms.
		

Crossrefs

Programs

  • Maple
    # Uses code snippets of A049417
    A127661 := proc(n)
        local trac,x;
        x := n ;
        trac := [x] ;
        while true do
            x := A049417(x)-trac[-1] ;
            if x = 0 then
                return 1+nops(trac) ;
            elif x in trac then
                return nops(trac) ;
            end if;
            trac := [op(trac),x] ;
        end do:
    end proc:
    seq(A127661(n),n=1..100) ; # R. J. Mathar, Oct 05 2017
  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ]; properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];Length[iTrajectory[ # ]] &/@ Range[100]
    (* Second program: *)
    A049417[n_] := If[n == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] // Total;
    A127661[n_] := Module[{trac, x}, x = n; trac = {x}; While[True, x = A049417[x] - trac[[-1]]; If[x == 0, Return[1 + Length[trac]], If[MemberQ[trac, x], Return[Length[trac]]]]; trac = Append[trac, x]]];
    Table[A127661[n], {n, 1, 100}] (* Jean-François Alcover, Aug 28 2023, after R. J. Mathar *)

A038148 Number of 3-infinitary divisors of n: if n = Product p(i)^r(i) and d = Product p(i)^s(i), each s(i) has a digit a <= b in its ternary expansion everywhere that the corresponding r(i) has a digit b, then d is a 3-infinitary-divisor of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 2, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 2, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 4, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 4, 4, 4, 4, 4, 2, 12, 2, 4, 6, 3, 4, 8, 2, 6, 4, 8, 2, 6, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4, 4, 2, 12, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 8, 2, 4, 8
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If e = sum d_k 3^k, then a(p^e) = prod (d_k+1). - Christian G. Bower, May 19 2005

Examples

			2^3*3 is a 3-infinitary-divisor of 2^5*3^2 because 2^3*3 = 2^10*3^1 and 2^5*3^2 = 2^12*3^2 in ternary expanded power. All corresponding digits satisfy the condition. 1 <= 1, 0 <= 2, 1 <= 2.
		

Crossrefs

Programs

Formula

a(1) = 1; for n > 1, a(n) = A006047(A067029(n)) * a(A028234(n)). [After Christian G. Bower's 2005 comment.] - Antti Karttunen, May 28 2017

Extensions

More terms from Naohiro Nomoto, Jun 21 2001
Data section further extended to 105 terms by Antti Karttunen, May 28 2017

A121507 Conjectured list of numbers whose aliquot sequence eventually reaches a cycle of length two or more.

Original entry on oeis.org

220, 284, 562, 1064, 1184, 1188, 1210, 1308, 1336, 1380, 1420, 1490, 1604, 1690, 1692, 1772, 1816, 1898, 2008, 2122, 2152, 2172, 2362, 2542, 2620, 2630, 2652, 2676, 2678, 2856, 2924, 2930, 2950, 2974, 3124, 3162, 3202, 3278, 3286, 3332, 3350, 3360
Offset: 1

Views

Author

Joshua Zucker, Aug 04 2006

Keywords

Comments

For some numbers the outcome of the aliquot sequence is unknown. Currently, 276 is the least such.

Crossrefs

Extensions

Edited by Don Reble, Aug 15 2006

A262625 Odd amicable numbers.

Original entry on oeis.org

12285, 14595, 67095, 69615, 71145, 87633, 100485, 122265, 124155, 139815, 522405, 525915, 802725, 863835, 947835, 1125765, 1175265, 1280565, 1340235, 1358595, 1438983, 1486845, 1798875, 1870245, 4482765, 5120595, 5357625, 5684679, 5730615, 6088905, 6377175, 6680025, 8619765, 9071685, 9206925, 9491625, 9498555, 9627915
Offset: 1

Views

Author

Omar E. Pol, Oct 02 2015

Keywords

Comments

Odd numbers that are also amicable numbers.
Intersection of A005408 and A063990.

Crossrefs

A007992 Augmented amicable pairs (smaller member of each pair).

Original entry on oeis.org

6160, 12220, 23500, 68908, 249424, 425500, 434784, 649990, 660825, 1017856, 1077336, 1238380, 1252216, 1568260, 1754536, 2166136, 2362360, 2482536, 2537220, 2876445, 3957525, 4177524, 4287825, 5224660, 5559510, 5641552
Offset: 1

Views

Author

Keywords

Comments

Let f(n) = 1 + sum of aliquot divisors of n; these are pairs (n,m) with f(n)=m, f(m)=n.
m cannot equal n. - Harvey P. Dale, May 18 2012
The term "augmented amicable numbers" was coined by Beck and Wajar (1977), who found the first 11 pairs. They also found the next 25 pairs (1993). - Amiram Eldar, Mar 09 2024

Crossrefs

Cf. A015630.

Programs

  • Mathematica
    aapQ[n_]:=Module[{c=DivisorSigma[1,n]+1-n},c!=n&&DivisorSigma[ 1,c]+1-c == n]; Transpose[Union[Sort[{#,DivisorSigma[1,#]+1-#}]&/@Select[Range[ 6000000],aapQ]]] [[1]] (* Harvey P. Dale, May 18 2012 *)

A015630 Augmented amicable pairs (larger member of each pair).

Original entry on oeis.org

11697, 16005, 28917, 76245, 339825, 570405, 871585, 697851, 678376, 1340865, 2067625, 1823925, 1483785, 1899261, 2479065, 2580105, 4895241, 4740505, 5736445, 3171556, 4791916, 6516237, 4416976, 7524525, 9868075, 7589745
Offset: 1

Views

Author

Keywords

Comments

Let f(n) = 1 + sum of aliquot divisors of n; these are pairs (n,m) with f(n)=m, f(m)=n.
The terms of the sequence are sorted in the order of the smaller (omitted) member of each pair. [Harvey P. Dale, Feb 29 2012]

Crossrefs

Cf. A007992.

Programs

  • Mathematica
    aap[n_]:=Module[{p=Total[Most[Divisors[n]]]+1},If[p!=n&&n==Total[Most[ Divisors[p]]]+1,{p,n},0]]; Transpose[Union[Sort/@DeleteCases[aap/@ Range[10000000],0]]][[2]] (* Harvey P. Dale, Feb 29 2012 *)

A049418 3-i-sigma(n): sum of 3-infinitary divisors of n: if n=Product p(i)^r(i) and d=Product p(i)^s(i), each s(i) has a digit a<=b in its ternary expansion everywhere that the corresponding r(i) has a digit b, then d is a 3-i-divisor of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 9, 13, 18, 12, 28, 14, 24, 24, 27, 18, 39, 20, 42, 32, 36, 24, 36, 31, 42, 28, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 54, 42, 96, 44, 84, 78, 72, 48, 108, 57, 93, 72, 98, 54, 84, 72, 72, 80, 90, 60, 168, 62, 96, 104, 73, 84, 144, 68, 126, 96
Offset: 1

Views

Author

Keywords

Examples

			Let n = 28 = 2^2*7. Then a(n) = (2^2 + 2 + 1)*(7 + 1) = 56. - _Vladimir Shevelev_, May 07 2013
		

Crossrefs

Cf. A049417 (2-infinitary), A074847 (4-infinitary), A097863 (5-infinitary).

Programs

  • Haskell
    following Bower and Harris:
    a049418 1 = 1
    a049418 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f p e = product $ zipWith div
               (map (subtract 1 . (p ^)) $
                    zipWith (*) a000244_list $ map (+ 1) $ a030341_row e)
               (map (subtract 1 . (p ^)) a000244_list)
    -- Reinhard Zumkeller, Sep 18 2015
    
  • Maple
    A049418 := proc(n) option remember; local ifa,a,p,e,d,k ; ifa := ifactors(n)[2] ; a := 1 ; if nops(ifa) = 1 then p := op(1,op(1,ifa)) ; e := op(2,op(1,ifa)) ; d := convert(e,base,3) ; for k from 0 to nops(d)-1 do a := a*(p^((1+op(k+1,d))*3^k)-1)/(p^(3^k)-1) ; end do: else for d in ifa do a := a*procname( op(1,d)^op(2,d)) ; end do: return a; end if; end proc:
    seq(A049418(n),n=1..40) ; # R. J. Mathar, Oct 06 2010
  • Mathematica
    A049418[n_] := Module[{ifa = FactorInteger[n], a = 1, p, e, d, k}, If[ Length[ifa] == 1, p = ifa[[1, 1]]; e = ifa[[1, 2]]; d = Reverse[ IntegerDigits[e, 3] ]; For[k = 1, k <= Length[d], k++, a = a*(p^((1 + d[[k]])*3^(k - 1)) - 1)/(p^(3^(k - 1)) - 1)], Do[ a = a*A049418[ d[[1]]^d[[2]] ], {d, ifa}]]; Return[a] ]; A049418[1] = 1; Table[ A049418[n] , {n, 1, 69}] (* Jean-François Alcover, Jan 03 2012, after R. J. Mathar *)
  • PARI
    apply( {A049418(n)=vecprod([prod(k=1,#n=digits(f[2],3),(f[1]^(3^(#n-k)*(n[k]+1))-1)\(f[1]^3^(#n-k)-1))|f<-factor(n)~])}, [1..99]) \\ M. F. Hasler, Sep 21 2022

Formula

Multiplicative with a(p^e) = prod_{k >= 0} (p^(3^k*{d_k+1}) - 1)/(p^(3^k) - 1), where e = sum_{k >= 0} d_k 3^k (base 3 representation). - Christian G. Bower and Mitch Harris, May 20 2005. [Edited by M. F. Hasler, Sep 21 2022]
Denote P_3 = {p^3^k}, k = 0, 1, ..., p runs primes. Then every n has a unique representation of the form n = prod q_i prod (r_j)^2, where q_i, r_j are distinct elements of P_3. Using this representation, we have a(n) = prod (q_i+1)*prod ((r_j)^2+r_j+1). - Vladimir Shevelev, May 07 2013

Extensions

More terms from Naohiro Nomoto, Sep 10 2001

A122726 Conjectured list of sociable numbers.

Original entry on oeis.org

12496, 14264, 14288, 14316, 14536, 15472, 17716, 19116, 19916, 22744, 22976, 31704, 45946, 47616, 48976, 83328, 97946, 122410, 152990, 177792, 243760, 274924, 275444, 285778, 294896, 295488, 358336, 366556, 376736, 381028, 418904, 589786
Offset: 1

Views

Author

Tanya Khovanova, Sep 23 2006

Keywords

Comments

Comments from David Moews, Sep 17 2021: (Start)
It is possible that there are quite small numbers missing from this sequence. There is no proof that 564 (for example) is missing.
Let s(n) = sigma(n)-n denote the sum of the divisors of n, excluding n itself. The aliquot sequence starting at n is the sequence n, s(n), s(s(n)), s(s(s(n))), ...
Starting at 564, the aliquot sequence continues for at least 3486 steps, reaching a 198-digit number after 3486 iterations of s. In the reverse direction, 563 = 564 - 1 is prime so s(563^2) = 564 and also s(7*316961) = 563^2, s(17*2218709) = 7*316961, etc.; given a strengthened form of the Goldbach conjecture (see Booker, 2018), one can continue iterating s^(-1) indefinitely.
Although it seems unlikely, I don't see any way to be completely certain that the forward aliquot sequence doesn't meet the backwards tree; if it did, 564 would be part of a (very long) aliquot cycle.
Many other numbers below 79750 are in a similar situation (although not 276, because it is not in the image of s).
(Added Sep 18 2021) The smallest uncertain number is 564. All smaller numbers either have known aliquot sequences (all except 276, 306, 396, and 552), are not in the image of s (276, 306, and 552), or are in the image of s but not the image of s^2 (396).
(End)

Examples

			The smallest sociable number cycle is {12496, 14288, 15472, 14536, 14264, 12496}.
		

Crossrefs

Cf. A003416 (smallest member of each cycle), A063990 (amicable numbers), A052470.

Extensions

Edited (including adding comments from David Moews that this is only conjectural) by N. J. A. Sloane, Sep 17 2021

A275701 Numbers n whose abundance is 26: sigma(n) - 2n = 26.

Original entry on oeis.org

80, 1184, 6464, 29312, 78975, 510464, 557192, 137431875584, 549741658112, 8796036399104, 35184258842624, 2251798907715584
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 05 2016

Keywords

Comments

Any term x = a(m) can be combined with any term y = A275702(n) to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2. Although this property is a necessary condition for two numbers to be amicable, it is not a sufficient one. So far, these two sequences have produced only one amicable pair: (x,y) = (1184,1210) = (a(2),A275702(5)) = (A063990(3),A063990(4)). If more are ever found, then they will also exhibit y-x = 26.
Notice that:
a(1) = 80 = 5* 16 = (2*4^2-27)*(4^2)
a(2) = 1184 = 37* 32 = (4^3-27)*(4^3)/2
a(3) = 6464 = 101* 64 = (2*4^3-27)*(4^3)
a(4) = 29312 = 229*128 = (4^4-27)*(4^4)/2
a(6) = 510464 = 997*512 = (4^5-27)*(4^5)/2.
If p = 2*4^k-27 is prime and n = p*(p+27)/2, then it is not hard to show that sigma(n) - 2*n = 26. The values of k in A275767 will guarantee that p is prime (A275749). Similarly, if q = 4^k-27 is prime and n = q*(q+27)/2, then sigma(n) - 2*n = 26. The values of k in A274519 will guarantee that q is prime (A275750). So, the following values will be in this sequence and provide upper bounds for the next eight terms:
(2*4^9-27)*(4^9) = 137431875584 >= a(8)
(4^10-27)*(4^10)/2 = 549741658112 >= a(9)
(4^11-27)*(4^11)/2 = 8796036399104 >= a(10)
(2*4^11-27)*(4^11) = 35184258842624 >= a(11)
(4^13-27)*(4^13)/2 = 2251798907715584 >= a(12)
(4^25-27)*(4^25)/2 = 633825300114099501099609227264 >= a(13)
(4^28-27)*(4^28)/2 = 2596148429267412841487728652582912 >= a(14)
(4^29-27)*(4^29)/2 = 41538374868278617137133892585652224 >= a(15).
a(8) > 10^9. - Michel Marcus, Sep 15 2016
a(8) > 2*10^9. - Michel Marcus, Dec 31 2016
a(13) > 10^18. - Hiroaki Yamanouchi, Aug 23 2018

Examples

			a(1) = 80, since sigma(80)-2*80 = 186-160 = 26.
a(2) = 1184, since sigma(1184)-2*1184 = 2394-2368 = 26.
a(3) = 6464, since sigma(6464)-2*6464 = 12954-12928 = 26.
		

Crossrefs

Cf. A033880, A063990, A274519, A275702 (deficiency 26), A275749, A275750, A275767.
Cf. A223609 (abundance 10), ..., A223613 (abundance 24).

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq 26]; // Vincenzo Librandi, Sep 16 2016
  • Mathematica
    Select[Range[10^7], DivisorSigma[1, #] - 2 # == 26 &] (* Vincenzo Librandi, Sep 16 2016 *)
  • PARI
    isok(n) = sigma(n) - 2*n == 26; \\ Michel Marcus, Sep 15 2016
    

Extensions

a(8)-a(12) from Hiroaki Yamanouchi, Aug 23 2018

A260086 Smaller of amicable pair (x, y) as they are listed in A259933.

Original entry on oeis.org

220, 1184, 2620, 5020, 6232, 10744, 12285, 17296, 66928, 67095, 63020, 69615, 79750, 100485, 122368, 122265, 141664, 142310, 171856, 176272, 185368, 196724, 280540, 308620, 319950, 356408, 437456, 469028, 503056, 522405, 600392, 609928, 643336, 624184, 635624, 667964, 726104, 802725, 879712, 898216, 998104, 947835
Offset: 1

Views

Author

Omar E. Pol, Jul 15 2015

Keywords

Comments

Another version of A002025.
First differs from A002025 at a(9).

Crossrefs

Formula

a(n) = A259933(2n-1) = A259953(n) - A259933(2n) = A259953(n) - A260087(n).
Previous Showing 21-30 of 133 results. Next