cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 76 results. Next

A309731 Expansion of Sum_{k>=1} k * x^k/(1 - x^k)^3.

Original entry on oeis.org

1, 5, 9, 20, 20, 48, 35, 76, 72, 110, 77, 204, 104, 196, 210, 288, 170, 405, 209, 480, 378, 440, 299, 816, 425, 598, 594, 868, 464, 1200, 527, 1104, 858, 986, 910, 1800, 740, 1216, 1170, 1960, 902, 2184, 989, 1980, 1890, 1748, 1175, 3216, 1470, 2475, 1938, 2704, 1484, 3456, 2090
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 14 2019

Keywords

Comments

Dirichlet convolution of natural numbers (A000027) with triangular numbers (A000217).

Crossrefs

Programs

  • Maple
    with(numtheory): seq(n*(tau(n)+sigma(n))/2, n=1..30); # Ridouane Oudra, Nov 28 2019
  • Mathematica
    nmax = 55; CoefficientList[Series[Sum[k x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DirichletConvolve[j, j (j + 1)/2, j, n], {n, 1, 55}]
    Table[n (DivisorSigma[0, n] + DivisorSigma[1, n])/2, {n, 1, 55}]
  • PARI
    a(n)=sumdiv(n,d,binomial(n/d+1,2)*d); \\ Andrew Howroyd, Aug 14 2019
    
  • PARI
    a(n)=n*(numdiv(n) + sigma(n))/2; \\ Andrew Howroyd, Aug 14 2019
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+1, 2)*x^k/(1-x^k)^2)) \\ Seiichi Manyama, Apr 19 2021

Formula

G.f.: Sum_{k>=1} (k*(k + 1)/2) * x^k/(1 - x^k)^2.
a(n) = n * (d(n) + sigma(n))/2.
Dirichlet g.f.: zeta(s-1) * (zeta(s-2) + zeta(s-1))/2.
a(n) = Sum_{k=1..n} k*tau(gcd(n,k)). - Ridouane Oudra, Nov 28 2019

A327165 Numbers n that have a divisor d such that sigma(d)*d is equal to n.

Original entry on oeis.org

1, 6, 12, 28, 30, 56, 72, 117, 120, 132, 180, 182, 306, 336, 360, 380, 496, 552, 672, 702, 775, 792, 840, 870, 992, 1080, 1092, 1406, 1440, 1568, 1584, 1680, 1722, 1836, 1892, 2016, 2160, 2184, 2256, 2280, 2793, 2862, 3276, 3312, 3510, 3540, 3600, 3672, 3696, 3782, 3960, 4032, 4556, 4560, 4650, 5096, 5112, 5220
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2019

Keywords

Comments

Numbers n for which A327153(n) > 0.
Sequence A064987 sorted into ascending order, with duplicates removed.
All even terms of A000396 occur here.

Crossrefs

Cf. A000203, A000396, A064987, A327153, A327599 (subsequence of odd terms).

Programs

  • PARI
    isA327165(n) = { fordiv(n, d, if(n==d*sigma(d),return(1))); (0); };
    
  • PARI
    A327165list(up_to) = { my(res = List()); for(i = 1, sqrtint(up_to), c = i*sigma(i); if(c <= up_to, listput(res, c))); listsort(res, 1); Vec(res); }; \\ From David A. Corneth, Sep 18 2019

A009242 a(n) = lcm(n, sigma(n)).

Original entry on oeis.org

1, 6, 12, 28, 30, 12, 56, 120, 117, 90, 132, 84, 182, 168, 120, 496, 306, 234, 380, 420, 672, 396, 552, 120, 775, 546, 1080, 56, 870, 360, 992, 2016, 528, 918, 1680, 3276, 1406, 1140, 2184, 360, 1722, 672, 1892, 924, 1170, 1656, 2256, 1488, 2793, 4650, 1224, 2548
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = n*A017665(n). - Enrique Pérez Herrero, Aug 25 2011
a(n) = A064987(n)/A009194(n). - Amiram Eldar, Mar 27 2024

A123229 Triangle read by rows: T(n, m) = n - (n mod m).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 4, 3, 4, 5, 4, 3, 4, 5, 6, 6, 6, 4, 5, 6, 7, 6, 6, 4, 5, 6, 7, 8, 8, 6, 8, 5, 6, 7, 8, 9, 8, 9, 8, 5, 6, 7, 8, 9, 10, 10, 9, 8, 10, 6, 7, 8, 9, 10, 11, 10, 9, 8, 10, 6, 7, 8, 9, 10, 11, 12, 12, 12, 12, 10, 12, 7, 8, 9, 10, 11, 12, 13, 12, 12, 12, 10, 12, 7, 8, 9, 10, 11, 12, 13
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 06 2006

Keywords

Comments

An equivalent definition: Consider A000012 as a lower-left all-1's triangle, and build the matrix product by multiplication with A127093 from the right. That is, T(n,m) = Sum_{j=m..n} A000012(n,j)*A127093(j,m) = Sum_{j=m..n} A127093(j,m) = m*floor(n/m) = m*A010766(n,m). - Gary W. Adamson, Jan 05 2007
The number of parts k in the triangle is A000203(k) hence the sum of parts k is A064987(k). - Omar E. Pol, Jul 05 2014

Examples

			Triangle begins:
{1},
{2, 2},
{3, 2, 3},
{4, 4, 3, 4},
{5, 4, 3, 4, 5},
{6, 6, 6, 4, 5, 6},
{7, 6, 6, 4, 5, 6, 7},
{8, 8, 6, 8, 5, 6, 7, 8},
{9, 8, 9, 8, 5, 6, 7, 8, 9},
...
		

Crossrefs

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],m->n-(n mod m)))); # Muniru A Asiru, Oct 12 2018
  • Maple
    seq(seq(n-modp(n,m),m=1..n),n=1..13); # Muniru A Asiru, Oct 12 2018
  • Mathematica
    a = Table[Table[n - Mod[n, m], {m, 1, n}], {n, 1, 20}]; Flatten[a]
  • PARI
    for(n=1,9,for(m=1,n,print1(n-n%m", "))) \\ Charles R Greathouse IV, Nov 07 2011
    

Extensions

Edited by N. J. A. Sloane, Jul 05 2014 at the suggestion of Omar E. Pol, who observed that A127095 (Gary W. Adamson, with edits by R. J. Mathar) was the same as this sequence.

A126832 Ramanujan numbers (A000594) read mod 5.

Original entry on oeis.org

1, 1, 2, 3, 0, 2, 1, 0, 2, 0, 2, 1, 2, 1, 0, 1, 1, 2, 0, 0, 2, 2, 2, 0, 0, 2, 0, 3, 0, 0, 2, 1, 4, 1, 0, 1, 1, 0, 4, 0, 2, 2, 2, 1, 0, 2, 1, 2, 3, 0, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 3, 0, 4, 1, 3, 4, 0, 2, 0, 2, 1, 0, 0, 2, 4, 0, 0, 1, 2, 2, 1, 0, 2, 0, 0, 0, 0, 2, 1, 4, 1, 0, 2, 1, 3, 4, 0, 2, 2, 2, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 166-167.

Crossrefs

Cf. this sequence (mod 5^1), A126833 (mod 5^2), A126834 (mod 5^3), A126835 (mod 5^4).

Programs

  • Mathematica
    Mod[RamanujanTau@ #, 5] & /@ Range@ 105 (* Michael De Vlieger, Apr 26 2016 *)
  • PARI
    a(n) = n*sigma(n) % 5; \\ Amiram Eldar, Jan 05 2025
  • Python
    from sympy import divisor_sigma
    def A126832(n): return n*divisor_sigma(n)%5 # Chai Wah Wu, Aug 24 2023
    

Formula

a(n) = n*sigma(n) mod 5. - Michel Marcus, Apr 26 2016. See also the Hardy reference, p. 166, (10.5.2), with a proof. - Wolfdieter Lang, Feb 03 2017

A249670 a(n) = A017665(n)*A017666(n).

Original entry on oeis.org

1, 6, 12, 28, 30, 2, 56, 120, 117, 45, 132, 21, 182, 84, 40, 496, 306, 78, 380, 210, 672, 198, 552, 10, 775, 273, 1080, 2, 870, 60, 992, 2016, 176, 459, 1680, 3276, 1406, 570, 2184, 36, 1722, 112, 1892, 231, 390, 828, 2256, 372, 2793, 4650, 408, 1274, 2862
Offset: 1

Views

Author

Michel Marcus, Nov 03 2014

Keywords

Comments

If n is a k-multiperfect, then a(n) = k.

Crossrefs

Cf. A000203 (sigma(n)).
Cf. A017665/A017666 (abundancy of n).
Cf. A009194 (gcd(n, sigma(n))), A064987 (n*sigma(n)).

Programs

  • Haskell
    a249670 n = div (n * s) (gcd n s ^ 2)
     where s = sum (filter (\k -> mod n k == 0) [1..n])
    -- Allan C. Wechsler, Mar 31 2023
  • Mathematica
    a249670[n_Integer] := Numerator[DivisorSigma[-1, n]]*Denominator[DivisorSigma[-1, n]]; a249670 /@ Range[80] (* Michael De Vlieger, Nov 10 2014 *)
  • PARI
    a(n) = my(ab = sigma(n)/n); numerator(ab)*denominator(ab);
    

Formula

a(n) = A064987(n)/A009194(n)^2.
a(A000396(n)) = 2 (perfect).
a(A005820(n)) = 3 (tri-perfect).
For p prime, a(p) = p*(p+1).

A282254 Coefficients in q-expansion of (3*E_4^3 + 2*E_6^2 - 5*E_2*E_4*E_6)/1584, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 1026, 59052, 1050628, 9765630, 60587352, 282475256, 1075843080, 3486961557, 10019536380, 25937424612, 62041684656, 137858491862, 289819612656, 576679982760, 1101663313936, 2015993900466, 3577622557482, 6131066257820, 10260044315640
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2017

Keywords

Comments

Multiplicative because A013957 is. - Andrew Howroyd, Jul 25 2018
D. H. Lehmer shows that a(n) == tau(n) (mod 7) for n > 0, where tau is Ramanujan's tau function (A000594). Furthermore, if n == 3, 5, 6 (mod 7) then a(n) == tau(n) (mod 49). See the Wikipedia link below. - Jianing Song, Aug 12 2020

Examples

			a(6) = 1^10*6^1 + 2^10*3^1 + 3^10*2^1 + 6^10*1^1 = 60587352.
		

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), this sequence (phi_{10, 1}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008411 (E_4^3), A280869 (E_6^2), A282102 (E_2*E_4*E_6).

Programs

  • Mathematica
    Table[If[n>0, n * DivisorSigma[9, n], 0], {n, 0, 20}] (* Indranil Ghosh, Mar 12 2017 *)
  • PARI
    for(n=0, 20, print1(if(n==0, 0, n * sigma(n, 9)),", ")) \\ Indranil Ghosh, Mar 12 2017

Formula

G.f.: phi_{10, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (3*A008411(n) + 2*A280869(n) - 5*A282102(n))/1584.
If p is a prime, a(p) = p^10 + p = A196292(p).
a(n) = n*A013957(n) for n > 0, where A013957(n) is sigma_9(n), the sum of the 9th powers of the divisors of n. - Seiichi Manyama, Feb 18 2017
Multiplicative with a(p^e) = p^e*(p^(9*(e+1))-1)/(p^9-1). - Jianing Song, Aug 12 2020
From Amiram Eldar, Oct 30 2023: (Start)
Dirichlet g.f.: zeta(s-1)*zeta(s-10).
Sum_{k=1..n} a(k) ~ zeta(10) * n^11 / 11. (End)

A337873 Numbers m such that the equation m = k*sigma(k) has more than one solution.

Original entry on oeis.org

336, 5952, 10080, 27776, 44352, 60480, 61152, 97536, 102816, 127680, 178560, 185472, 196560, 260400, 292320, 333312, 455168, 472416, 578592, 635712, 758016, 785664, 833280, 961632, 1083264, 1179360, 1189440, 1270752, 1330560, 1530816, 1717632, 1815072, 1821312, 1834560
Offset: 1

Views

Author

Bernard Schott, Sep 27 2020

Keywords

Comments

The map k -> k*sigma(k) = m is not injective (A064987), this sequence lists in increasing order the integers m that have several preimages.
These terms m satisfy A327153(m) > 1.
If 2^p-1 and 2^r-1 are distinct Mersenne primes (A000668), then k = (2^p-1)* 2^(r-1) and q = (2^r-1) * 2^(p-1) satisfy k*sigma(k) = q*sigma(q) = m = (2^p-1) * (2^r-1) * 2^(p+r-1) [see examples a(1) and a(2)].
The multiplicativity of sigma(k) ensures an infinity of solutions and thus of terms m [see example a(3)].

Examples

			For a(1): 12 * sigma(12) = 14 * sigma(14) = 336 with p=2 and r=3.
For a(2): 48 * sigma(48) = 62 * sigma(62) = 5952 with p=2 and r=5.
For a(3): 60 * sigma(60) = 70 * sigma(70) = 10080 with 60/12 = 70/14 = 5.
a(16) = 333312 is the smallest term with 3 preimages because 336 * sigma(336) = 372 * sigma(372) = 434 * sigma(434) = 333312.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 101-102.

Crossrefs

Cf. A327153. Subsequence of A327165.
Cf. A212490, A337874 (preimages), A337875 (primitive terms).

Programs

  • Mathematica
    m = 2*10^6; v = Table[0, {m}]; Do[i = n*DivisorSigma[1, n]; If[i <= m, v[[i]]++], {n, 1, Floor@Sqrt[m]}]; Position[v, ?(# > 1 &)] // Flatten (* _Amiram Eldar, Sep 28 2020 *)
  • PARI
    upto(n) = {m = Map(); res = List(); n = sqrtint(n); for(i = 1, n, c = i*sigma(i); if(mapisdefined(m, c), listput(res, c); mapput(m, c, mapget(m, c) + 1) , mapput(m, c, 1); ) ); listsort(res, 1); select(x -> x <= (n+1)^2, res) } \\ David A. Corneth, Sep 27 2020
    
  • PARI
    isok(m) = {my(nb=0); fordiv(m, d, if (d*sigma(d) == m, nb++; if (nb>1, return(1)));); return (0);} \\ Michel Marcus, Sep 29 2020

Extensions

More terms from David A. Corneth, Sep 27 2020

A385137 The sum of divisors d of n such that n/d is a 3-smooth number (A003586).

Original entry on oeis.org

1, 3, 4, 7, 5, 12, 7, 15, 13, 15, 11, 28, 13, 21, 20, 31, 17, 39, 19, 35, 28, 33, 23, 60, 25, 39, 40, 49, 29, 60, 31, 63, 44, 51, 35, 91, 37, 57, 52, 75, 41, 84, 43, 77, 65, 69, 47, 124, 49, 75, 68, 91, 53, 120, 55, 105, 76, 87, 59, 140, 61, 93, 91, 127, 65, 132
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), A385135 (exponentially odd), A385136 (cubefull), this sequence (3-smooth), A385138 (5-rough), A385139 (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := If[p < 5, (p^(e+1) - 1)/(p - 1), p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p < 5, (p^(e + 1) - 1)/(p - 1), p^e));}

Formula

a(n) = A064987(n)/A385138(n).
Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= 3, and p^e if p >= 5.
In general, the sum of divisors d of n such that n/d is q-smooth (not divisible by a prime larger than q) is multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= q, and p^e if p > q.
Dirichlet g.f.: zeta(s-1) / ((1 - 1/2^s) * (1 - 1/3^s)).
In general, the sum of divisors d of n such that n/d is q-smooth has Dirichlet g.f.: zeta(s-1) / Product_{p prime <= q} (1 - 1/q^s).
Sum_{k=1..n} a(k) ~ (3/4)*n^2.
In general, the sum of divisors d of n such that n/d is prime(k)-smooth has an average order c * n^2 / 2, where c = A072044(k-1)/A072045(k-1) for k >= 2.

A385138 The sum of divisors d of n such that n/d is a 5-rough number (A007310).

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 8, 8, 9, 12, 12, 12, 14, 16, 18, 16, 18, 18, 20, 24, 24, 24, 24, 24, 31, 28, 27, 32, 30, 36, 32, 32, 36, 36, 48, 36, 38, 40, 42, 48, 42, 48, 44, 48, 54, 48, 48, 48, 57, 62, 54, 56, 54, 54, 72, 64, 60, 60, 60, 72, 62, 64, 72, 64, 84, 72, 68, 72
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), A385135 (exponentially odd), A385136 (cubefull), A385137 (3-smooth), this sequence (5-rough), A385139 (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := If[p > 3, (p^(e+1) - 1)/(p - 1), p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p > 3, (p^(e + 1) - 1)/(p - 1), p^e));}

Formula

a(n) = A064987(n)/A385137(n).
Multiplicative with a(p^e) = p^e if p <= 3, and (p^(e+1)-1)/(p-1) if p >= 5.
In general, the sum of divisors d of n such that n/d is q-rough (not divisible by a prime smaller than q) is multiplicative with a(p^e) = p^e if p <= q, and (p^(e+1)-1)/(p-1) if p > q.
Dirichlet g.f.: zeta(s-1) * zeta(s) * ((1 - 1/2^s) * (1 - 1/3^s)).
In general, the sum of divisors d of n such that n/d is q-rough has Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime <= q} (1 - 1/q^s).
Sum_{k=1..n} a(k) ~ (Pi^2/18)*n^2.
In general, the sum of divisors d of n such that n/d is prime(k)-rough has an average order c * n^2 / 2, where c = zeta(2) * A072045(k-1)/A072044(k-1) for k >= 2.
Previous Showing 21-30 of 76 results. Next