cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A335762 Decimal expansion of Product_{p prime} (1 + p/((p-1)*(p+1)^2)).

Original entry on oeis.org

1, 4, 5, 0, 0, 3, 2, 1, 4, 5, 3, 6, 2, 1, 2, 0, 8, 3, 1, 6, 0, 8, 3, 9, 5, 8, 8, 7, 1, 8, 9, 2, 2, 3, 4, 2, 2, 3, 2, 5, 0, 6, 2, 1, 1, 7, 4, 4, 7, 1, 6, 7, 1, 4, 4, 6, 5, 2, 4, 3, 8, 8, 3, 6, 7, 0, 9, 4, 1, 6, 3, 3, 7, 2, 9, 3, 8, 0, 8, 3, 0, 7, 6, 8, 1, 3, 5, 8, 7, 0, 3, 6, 5, 5, 6, 3, 9, 1, 4, 6, 5, 5, 8, 5, 5
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2020

Keywords

Comments

The asymptotic mean of A367987. - Amiram Eldar, Dec 23 2023

Examples

			1.450032145362120831608395887189223422325062117447167...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{-1, 1, 2, 0, -1}, {0, 2, -3, 6, -5}, m]; RealDigits[Exp[NSum[Indexed[c, n]*(PrimeZetaP[n])/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
  • PARI
    prodeulerrat(1 + p/((p-1)*(p+1)^2)) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Sum_{k>=1} 1/A000082(k) = Sum_{k>=1} 1/(k * A001615(k)).
Equals A013661 * A065465. - Amiram Eldar, Dec 23 2023

Extensions

More digits from Vaclav Kotesovec, Sep 19 2020

A375032 The maximum odd exponent in the prime factorization of n, or 0 if no such exponent exists.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 3, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 0, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 0, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 28 2024

Keywords

Comments

The asymptotic density of the occurrences of 0's is 0 (the asymptotic density of squares).
The asymptotic density of the occurrences of 1's is d(0) = Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.881513... (A065465, asymptotic density of A335275).
The asymptotic density of the occurrences of 2*k+1, for k = 1, 2, ..., is d(k) = Product_{p prime} (1 - 1/(p^(2*k+2)*(p+1))) - Product_{p prime} (1 - 1/(p^(2*k)*(p+1))).

Crossrefs

Programs

  • Mathematica
    a[n_] := Max[0, Max[Select[FactorInteger[n][[;; , 2]], OddQ]]]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = {my(e = select(x -> (x % 2), factor(n)[,2])); if(#e == 0, 0, vecmax(e));}

Formula

max(a(n), A375033(n)) = A051903(n).
a(n) = 0 if and only if n is a square (A000290).
a(n) = 1 if and only if n is in A335275 \ A000290.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} (2*k+1) * d(k) = 1.30000522546018852138..., where d(k) is defined in the Comments section above.
a(n) = A051903(A350389(n)). - Amiram Eldar, Aug 17 2024

A055654 Difference between n and the result of "Phi-summation" over unitary divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 0, 3, 0, 0, 0, 7, 0, 4, 0, 5, 0, 0, 0, 9, 4, 0, 8, 7, 0, 0, 0, 15, 0, 0, 0, 15, 0, 0, 0, 15, 0, 0, 0, 11, 10, 0, 0, 21, 6, 8, 0, 13, 0, 16, 0, 21, 0, 0, 0, 15, 0, 0, 14, 31, 0, 0, 0, 17, 0, 0, 0, 37, 0, 0, 12, 19, 0, 0, 0, 35, 26, 0, 0, 21, 0, 0, 0, 33, 0, 20, 0, 23
Offset: 1

Views

Author

Labos Elemer, Jun 07 2000

Keywords

Comments

Squarefree numbers are roots of a(n)=0 equation, while Min n for which a(n)=k is k^2. See also A000188, A008833.

Crossrefs

Programs

  • Haskell
    a055654 n = a055654_list !! (n-1)
    a055654_list = zipWith (-) [1..] a055653_list
    -- Reinhard Zumkeller, Mar 11 2012
    
  • Mathematica
    Table[n - DivisorSum[n, EulerPhi[#] &, CoprimeQ[#, n/#] &], {n, 92}] (* Michael De Vlieger, Oct 26 2017 *)
    f[p_, e_] := p^e - p^(e-1) + 1; a[1] = 0; a[n_] := n - Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 04 2024 *)
  • PARI
    a(n) = n - sumdiv(n, d, if (gcd(d, n/d)==1, eulerphi(d))); \\ Michel Marcus, Oct 27 2017
    
  • PARI
    a(n) = {my(f = factor(n)); n - prod(k = 1, #f~, f[k,1]^f[k,2] - f[k,1]^(f[k,2] - 1) + 1);} \\ Amiram Eldar, Oct 04 2024

Formula

a(n) = n - Sum_{u|n, gcd(u,n/u) = 1} phi(u), i.e. when u is a unitary divisor of n.
a(n) = n - A055653(n). - Sean A. Irvine, Mar 30 2022
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 - A065465 = 0.11848616... . - Amiram Eldar, Oct 04 2024

A056196 Numbers n such that A055229(n) = 2.

Original entry on oeis.org

8, 24, 32, 40, 56, 72, 88, 96, 104, 120, 128, 136, 152, 160, 168, 184, 200, 224, 232, 248, 264, 280, 288, 296, 312, 328, 344, 352, 360, 376, 384, 392, 408, 416, 424, 440, 456, 472, 480, 488, 504, 512, 520, 536, 544, 552, 568, 584, 600, 608, 616, 632, 640
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Comments

By definition, the largest square divisor and squarefree part of these numbers have GCD = 2.
Different from A036966. E.g., 81 is not here because A055229(81) = 1.
Numbers of the form 2^(2*k+1) * m, where k >= 1 and m is an odd number whose prime factorization contains only exponents that are either 1 or even. The asymptotic density of this sequence is (1/12) * Product_{p odd prime} (1-1/(p^2*(p+1))) = A065465 / 11 = 0.08013762179319734335... - Amiram Eldar, Dec 04 2020, Nov 25 2022

Examples

			88 is here because 88 has squarefree part 22, largest square divisor 4, and A055229(88) = gcd(22, 4) = 2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local T;
        T:= select(t -> (t[2]::odd and t[2]>1), ifactors(n)[2]);
        nops(T) = 1 and T[1][1]=2;
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Sep 21 2015
  • Mathematica
    f[n_] := Block[{p = FactorInteger@ n, a}, a = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ p); GCD[a, n/a]]; Position[Array[f, 640], 2] // Flatten (* Michael De Vlieger, Sep 22 2015, after Jean-François Alcover at A055229 *)
  • PARI
    isok(n) = my(c=core(n)); gcd(c, n/c) == 2; \\ after PARI in A055229; Michel Marcus, Sep 20 2015

Extensions

Edited by Robert Israel, Sep 21 2015

A072780 a(n) = sigma_2(n) + phi(n) * sigma(n) - 2*n^2, which is A072779(n) - 2*n^2.

Original entry on oeis.org

0, 0, 0, 3, 0, 2, 0, 17, 7, 2, 0, 34, 0, 2, 2, 77, 0, 41, 0, 82, 2, 2, 0, 178, 21, 2, 82, 154, 0, 76, 0, 325, 2, 2, 2, 411, 0, 2, 2, 450, 0, 124, 0, 370, 188, 2, 0, 786, 43, 115, 2, 514, 0, 428, 2, 858, 2, 2, 0, 948, 0, 2, 356, 1333, 2, 268, 0, 874, 2, 156, 0, 2047, 0, 2, 220
Offset: 1

Views

Author

T. D. Noe, Jul 15 2002

Keywords

Comments

This sequence is interesting because (1) a(n) >= 0, with equality only when n is prime (or 1) and (2) a(n) = 2 if and only if n is the product of two distinct primes. Note for twin primes: let n = m^2 - 1, then m-1 and m+1 are twin primes if and only if a(n) = 2. Note for the Goldbach conjecture: let n = m^2 - r^2, then m-r and m+r are primes that add to 2m if and only if a(n) = 2.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[2, n]+EulerPhi[n]DivisorSigma[1, n]-2n^2, {n, 100}]
  • PARI
    a(n)=sigma(n,2)+eulerphi(n)*sigma(n)-2*n^2 \\ Charles R Greathouse IV, May 15 2013

Formula

Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(3) + Product_{p prime} (1 - 1/(p^2*(p+1))) - 2 = A002117 + A065465 - 2 = 0.083570742884... . - Amiram Eldar, Dec 03 2023

A076998 Difference between cubefree and squarefree components of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 6, 0, 0, 0, 2, 0, 12, 0, 10, 0, 0, 0, 6, 20, 0, 6, 14, 0, 0, 0, 2, 0, 0, 0, 30, 0, 0, 0, 10, 0, 0, 0, 22, 30, 0, 0, 6, 42, 40, 0, 26, 0, 12, 0, 14, 0, 0, 0, 30, 0, 0, 42, 2, 0, 0, 0, 34, 0, 0, 0, 30, 0, 0, 60, 38, 0, 0, 0, 10, 6, 0, 0, 42, 0, 0, 0, 22, 0, 60, 0, 46
Offset: 1

Views

Author

Jon Perry, Nov 28 2002

Keywords

Examples

			a(4)=2 as cubefree(4)=4 and squarefree(4)=2. 4-2=2
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{f = FactorInteger[n]}, Times @@ (First[#]^Min[Last[#], 2] & /@ f) - Times @@ (First[#] & /@ f)]; Array[a, 100] (* Amiram Eldar, Sep 24 2023 *)
  • PARI
    rad(n)=local(p,i); p=factor(n)[,1]; prod(i=1,length(p),p[i])
    rad2(n)=local(p,pn,i); p=factor(n)[,1]; pn=factor(n)[,2]; prod(i=1,length(p),p[i]^min(2,pn[i]))
    for (k=1,100,print1(rad2(k)-rad(k)", "))
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^min(f[i,2],2)) - vecprod(f[,1]);} \\ Amiram Eldar, Sep 24 2023

Formula

a(n) = A007948(n) - A007947(n). - Antti Karttunen, Jul 21 2018
From Amiram Eldar, Sep 24 2023: (Start)
a(n) >= 0, with equality if and only if n is squarefree (A005117).
Sum_{k=1..n} a(k) ~ (1/2) * c * n^2, where c = A065465 - A065463 = 0.17707163872600518419... . (End)

A116393 Decimal expansion of Product(1 - 1/(p+1)^3), p prime >= 2.

Original entry on oeis.org

9, 4, 0, 3, 0, 0, 4, 1, 4, 5, 7, 0, 3, 4, 5, 0, 7, 0, 6, 1, 9, 4, 6, 5, 3, 8, 5, 3, 7, 3, 2, 3, 9, 4, 4, 9, 9, 9, 8, 5, 7, 4, 0, 1, 4, 3, 6, 9, 1, 3, 0, 0, 7, 2, 5, 7, 0, 3, 1, 3, 3, 8, 3, 0, 5, 9, 4, 7, 4, 6, 2, 1, 0, 4, 5, 5, 4, 5, 7, 8, 0, 1, 2, 6, 7, 0, 4
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

Comments

Calculated from A065465 * A065467^3 * X / A065466^2 where X = 1.03108637675008536... = product[ 1+ (4p^13 +13p^12 +10p^11 -3p^10 -9p^9 -12p^8 -9p^7 +6p^5 +4p^4 +2p^3 +p^2 -p -1) /(p^5+p^4-1)^3 / (p^3+p^2-1) / (p+1)] over prime p >=2. - R. J. Mathar, Sep 10 2007

Examples

			0.9403004...
		

Crossrefs

Cf. A065472.

Programs

  • PARI
    prodeulerrat(1 - 1/(p+1)^3) \\ Amiram Eldar, Nov 29 2020

Extensions

More terms from John W. Layman and Zak Seidov, Apr 20 2006
More terms from R. J. Mathar, Sep 10 2007
More terms from Amiram Eldar, Nov 29 2020

A135178 a(n) = p^3 + p^2 where p = prime(n).

Original entry on oeis.org

12, 36, 150, 392, 1452, 2366, 5202, 7220, 12696, 25230, 30752, 52022, 70602, 81356, 106032, 151686, 208860, 230702, 305252, 362952, 394346, 499280, 578676, 712890, 922082, 1040502, 1103336, 1236492, 1306910, 1455666, 2064512, 2265252
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4)=392 because the 4th prime number is 7, 7^3=343, 7^2=49 and 343+49=392.
		

Crossrefs

Cf. A000040 (p), A001248 (p^2), A030078 (p^3).
Cf. A065465.

Programs

Formula

Product_{n>=1} (1 - 1/a(n)) = A065465. - Amiram Eldar, Jan 23 2021
Sum 1/a(n) = A382562.

A365347 The sum of divisors of the smallest number whose square is divisible by n.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 7, 4, 18, 12, 12, 14, 24, 24, 7, 18, 12, 20, 18, 32, 36, 24, 28, 6, 42, 13, 24, 30, 72, 32, 15, 48, 54, 48, 12, 38, 60, 56, 42, 42, 96, 44, 36, 24, 72, 48, 28, 8, 18, 72, 42, 54, 39, 72, 56, 80, 90, 60, 72, 62, 96, 32, 15, 84, 144, 68, 54
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2023

Keywords

Comments

The number of divisors of the smallest number whose square is divisible by n is A322483(n).
The sum of divisors of the smallest square divisible by n is A365346(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^((e + Mod[e, 2])/2 + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^((f[i,2] + f[i,2]%2)/2 + 1) - 1)/(f[i,1] - 1));}
    
  • PARI
    a(n) = sigma(n/core(n, 1)[2]); \\ Michel Marcus, Sep 02 2023

Formula

a(n) = A000203(A019554(n)).
Multiplicative with a(p^e) = (p^(e + 1 + (e mod 2)) - 1)/(p - 1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * zeta(3) * Product_{p prime} (1 - 1/(p^2*(p+1))) = (1/2) * A002117 * A065465 = 0.529814898136... .

A367407 a(n) = sqrt(A367406(n)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 4, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 12, 26, 9, 29, 30, 31, 8, 33, 34, 35, 37, 38, 39, 20, 41, 42, 43, 46, 47, 51, 53, 18, 55, 28, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 44, 89, 91, 93, 94, 95, 24, 97
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Comments

A permutation of the positive integers.

Crossrefs

Programs

  • Mathematica
    s[n_] := Sqrt[n * Times @@ FactorInteger[n][[;;, 1]]]; s /@ Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]^(f[i,2]+1), 0));}
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(sqrtint(b1), ", ")));}

Formula

a(n) = sqrt(A064549(A268335(n))).
a(n) = sqrt(A268335(n)*A367417(n)).
a(n) = A268335(n)/A367419(n).
Sum_{k=1..n} a(k) = c * n^2 / 2, where c = (zeta(3)/(zeta(2)*d^2)) * Product_{p prime} (1 - 1/(p^2*(p+1))) = A253905 * A065465 / d^3 = 1.29812028442810841122..., and d = A065463 is the asymptotic density of the exponentially odd numbers (A268335).
Previous Showing 11-20 of 32 results. Next