cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 53 results. Next

A117204 Squarefree positive integers k such that 2*k+1 is also squarefree.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 17, 19, 21, 23, 26, 29, 30, 33, 34, 35, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 59, 61, 65, 66, 69, 70, 71, 74, 77, 78, 79, 82, 83, 86, 89, 91, 93, 95, 97, 101, 102, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119
Offset: 1

Views

Author

Leroy Quet, Mar 02 2006

Keywords

Comments

The asymptotic density of this sequence is (3/2)*A065474 = 0.4839511484... (Erdős and Ivić, 1987). - Amiram Eldar, Mar 02 2021

Examples

			10 and 2*10 +1 = 21 are both squarefree, so 10 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    sfQ[n_]:=SquareFreeQ[n]&&SquareFreeQ[2n+1]; Select [Range[200],sfQ] (* Harvey P. Dale, Mar 12 2011 *)

Formula

a(n) = (A117203(n) - 1)/2.

Extensions

More terms from Jonathan Vos Post, Mar 03 2006
Corrected and extended by Harvey P. Dale, Mar 12 2011

A086700 Euler phi function applied to the triangular numbers.

Original entry on oeis.org

1, 2, 2, 4, 8, 12, 12, 12, 24, 40, 20, 24, 72, 48, 32, 64, 96, 108, 72, 48, 120, 220, 88, 80, 240, 216, 108, 168, 224, 240, 240, 160, 320, 384, 144, 216, 648, 432, 192, 320, 480, 504, 420, 240, 528, 1012, 368, 336, 840, 640, 384, 624, 936, 720, 480, 432, 1008, 1624, 464, 480, 1800, 1080, 576, 768, 960, 1320
Offset: 1

Views

Author

Jon Perry, Jul 28 2003

Keywords

Examples

			a(3) = phi(6) = 2.
		

Crossrefs

Programs

  • Maple
    with(numtheory):with(combinat):a:=n->phi(binomial(n,2)): seq(a(n), n=2..31); # Zerinvary Lajos, Oct 05 2007
  • Mathematica
    EulerPhi[Accumulate[Range[70]]] (* Harvey P. Dale, Sep 16 2012 *)
  • PARI
    vector(66,n,eulerphi(n*(n+1)/2))
    
  • Sage
    [euler_phi(binomial(n,2)) for n in range(2,32)] # Zerinvary Lajos, Jun 06 2009

Formula

a(n) = A000010(A000217(n)). - Michel Marcus, Aug 21 2017
Sum_{k=1..n} a(k) = c * n^3 / 4 + O((n*log(n))^2), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474). - Amiram Eldar, Dec 09 2024

A087618 a(n) is the number of pair of consecutive numbers (k,k+1) with k<=10^n such that k and k+1 are both squarefree.

Original entry on oeis.org

1, 5, 33, 323, 3230, 32269, 322619, 3226343, 32263377, 322634281, 3226340896, 32263409594, 322634100659, 3226340989192
Offset: 0

Views

Author

Eric W. Weisstein, Sep 19 2003

Keywords

Crossrefs

Formula

Asymptotic density is A065474.

Extensions

a(11)-a(13) from Donovan Johnson, Jun 26 2010

A173186 Numbers k such that k^2-1 is not squarefree.

Original entry on oeis.org

1, 3, 5, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 33, 35, 37, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 55, 57, 59, 61, 62, 63, 64, 65, 67, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 87, 89, 91, 93, 95, 97, 98, 99, 100, 101, 103, 105
Offset: 1

Views

Author

Keywords

Comments

Complement of A067874 - R. J. Mathar, Feb 13 2010
The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 2/p^2) = 0.677365... (1 - A065474). - Amiram Eldar, Feb 25 2021

Examples

			5 is a term since 5^2-1 = 24 = 2^3*3 is not squarefree.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=SquareFreeQ[n]; lst={};Do[If[f[n^2-1],AppendTo[lst,n]],{n,6!}]; lst
    Select[Range[120],!SquareFreeQ[#^2-1]&] (* Harvey P. Dale, Jul 16 2016 *)

Extensions

Definition edited by R. J. Mathar, Feb 13 2010

A215726 Numbers k such that the k-th triangular number is squarefree.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 19, 20, 21, 22, 28, 29, 30, 33, 34, 37, 38, 41, 42, 43, 46, 51, 52, 57, 58, 59, 60, 61, 65, 66, 67, 68, 69, 70, 73, 76, 77, 78, 82, 83, 84, 85, 86, 91, 92, 93, 94, 101, 102, 105, 106, 109, 110, 113, 114, 115, 118, 122, 123
Offset: 1

Views

Author

Zak Seidov, Aug 22 2012

Keywords

Comments

The asymptotic density of this sequence is (3/2)*A065474 = 0.4839511484... (Granville and Ramaré, 1996). - Amiram Eldar, Feb 17 2021

Examples

			14 is a term because A000217(14) = 14*15/2 = 105 = 3*5*7.
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 184.

Crossrefs

A007674 is a subsequence.

Programs

Formula

Numbers k such that A000217(k) is squarefree. [corrected by Zak Seidov, Jun 05 2013]

A319210 a(n) = phi(n^2 - 1)/2 where phi is A000010.

Original entry on oeis.org

1, 2, 4, 4, 12, 8, 18, 16, 30, 16, 60, 24, 48, 48, 64, 48, 144, 48, 108, 80, 132, 80, 220, 96, 180, 144, 252, 96, 420, 128, 300, 256, 240, 192, 432, 216, 432, 288, 480, 192, 840, 240, 504, 440, 552, 352, 966, 320, 672, 480, 832, 432, 1040, 432, 720, 672, 1044, 448
Offset: 2

Views

Author

Seiichi Manyama, Sep 13 2018

Keywords

Crossrefs

Row 2 of A369291.
Cf. A000010, A005563 (n^2-1, shifted), A065474.
phi(n^b - 1)/b: this sequence (b=2), A319213 (b=3), A319214 (b=5).

Programs

  • Magma
    [EulerPhi(n^2-1)/2: n in [2..70]]; // Vincenzo Librandi, Sep 15 2018
  • Mathematica
    Table[(EulerPhi@(n^2 - 1) / 2), {n, 2, 70}] (* Vincenzo Librandi, Sep 15 2018 *)
  • PARI
    {a(n) = eulerphi(n^2-1)/2}
    

Formula

Sum_{k=1..n} a(k) = c * n^3 / 4 + O((n*log(n))^2), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474). - Amiram Eldar, Dec 09 2024

A330319 a(n) = Sum_{i=1..n} phi(i)*phi(i+1), where phi(n) = A000010(n) is Euler's totient function.

Original entry on oeis.org

1, 3, 7, 15, 23, 35, 59, 83, 107, 147, 187, 235, 307, 355, 419, 547, 643, 751, 895, 991, 1111, 1331, 1507, 1667, 1907, 2123, 2339, 2675, 2899, 3139, 3619, 3939, 4259, 4643, 4931, 5363, 6011, 6443, 6827, 7467, 7947, 8451, 9291, 9771, 10299, 11311, 12047, 12719, 13559, 14199, 14967, 16215, 17151, 17871, 18831
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 2019

Keywords

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 32.

Crossrefs

Partial sums of A083542.

Programs

  • Mathematica
    phi = EulerPhi[Range[56]]; Accumulate[Most[phi] * Rest[phi]] (* Amiram Eldar, Mar 05 2020 *)
  • PARI
    a(n) = sum(i=1, n, eulerphi(i)*eulerphi(i+1)); \\ Michel Marcus, Mar 05 2020

Formula

a(n) ~ (c/3) * n^3 + O(n^2*log(n)^2), where c = Product_{p prime}(1 - 2/p^2) (A065474). - Amiram Eldar, Mar 05 2020

A340153 Decimal expansion of Product_{p prime} (1 - 2/p^3).

Original entry on oeis.org

6, 7, 6, 8, 9, 2, 7, 3, 7, 0, 0, 9, 8, 8, 1, 9, 9, 3, 6, 1, 0, 2, 3, 7, 3, 2, 6, 7, 2, 4, 3, 8, 9, 2, 1, 2, 7, 9, 7, 6, 7, 8, 3, 9, 7, 4, 5, 9, 7, 8, 8, 8, 4, 5, 2, 7, 3, 2, 9, 7, 8, 2, 3, 0, 4, 4, 3, 2, 6, 3, 2, 0, 4, 6, 0, 3, 5, 7, 8, 6, 0, 5, 1, 2, 8, 3, 2, 6, 8, 4, 8, 1, 1, 1, 1, 0, 8, 4, 4, 9, 3, 1, 7, 0, 8, 4
Offset: 0

Views

Author

Amiram Eldar, Dec 29 2020

Keywords

Comments

The asymptotic density of the sequence of cubefree numbers k such that k+1 is also cubefree (A340152) (Carlitz, 1932).

Examples

			0.67689273700988199361023732672438921279767839745978...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 500; m = 500; c = LinearRecurrence[{0, 0, 2}, {0, 0, -6}, m]; RealDigits[Exp[NSum[Indexed[c, n]*(PrimeZetaP[n])/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
  • PARI
    prodeulerrat(1 - 2/p^3)

Extensions

More digits from Vaclav Kotesovec, Jan 16 2021

A368249 a(n) = A002378(A005117(n)-1).

Original entry on oeis.org

0, 2, 6, 20, 30, 42, 90, 110, 156, 182, 210, 272, 342, 420, 462, 506, 650, 812, 870, 930, 1056, 1122, 1190, 1332, 1406, 1482, 1640, 1722, 1806, 2070, 2162, 2550, 2756, 2970, 3192, 3306, 3422, 3660, 3782, 4160, 4290, 4422, 4692, 4830, 4970, 5256, 5402, 5852, 6006
Offset: 1

Views

Author

Amiram Eldar, Dec 19 2023

Keywords

Comments

The squarefree oblong numbers (A229882) are all terms of this sequence, and their relative asymptotic density in it is A065474/A059956 = 0.530711... (A065469).

Crossrefs

Programs

  • Mathematica
    Table[n*(n - 1), {n, Select[Range[100], SquareFreeQ]}]
  • PARI
    lista(kmax) = forsquarefree(k=1, kmax, print1(k[1]*(k[1]-1), ", "));
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A368249(n):
        def f(x): return int(n-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m*(m-1) # Chai Wah Wu, Dec 23 2024

Formula

Sum_{n>=2} 1/a(n) = Sum_{k>=2} (zeta(k)/zeta(2*k) - 1) = 0.848633... (A368250).

A064148 Numbers k such that mu(k) = mu(k+1), where mu is the Möbius function (A008683).

Original entry on oeis.org

2, 8, 14, 21, 24, 27, 29, 30, 33, 34, 38, 41, 42, 44, 48, 49, 57, 63, 66, 70, 75, 78, 80, 85, 86, 93, 94, 98, 99, 101, 102, 109, 113, 116, 118, 120, 122, 124, 125, 130, 133, 135, 137, 138, 141, 142, 145, 147, 152, 158, 168, 171, 173, 175, 177, 181, 188, 190, 201
Offset: 1

Views

Author

Jason Earls, Sep 11 2001

Keywords

Examples

			2 is a term since mu(2) = mu(3) = -1.
		

Crossrefs

Programs

  • Mathematica
    SequencePosition[MoebiusMu[Range[250]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 26 2017 *)
  • PARI
    j=[]; for(n=1,500, if(moebius(n)==moebius(n+1),j=concat(j,n))); j
    
  • PARI
    { n=0; for (m=1, 10^9, if (moebius(m)==moebius(m + 1), write("b064148.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 09 2009

Formula

a(n) seems to be asymptotic to c*n with c=3.7.... Using heuristic arguments (cf. A074820): c maybe = 1/(3A/2 + 1 - 12/Pi^2) ~ 3.729994018, where A ~ 0.3226340989 is the product over all primes p of 1 - 2/p^2 (cf. A065474). - Benoit Cloitre, Sep 08 2002
Previous Showing 21-30 of 53 results. Next