cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A356229 Number of maximal gapless submultisets of the prime indices of 2n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
This is a bisection of A287170, but is important in its own right because the even numbers are exactly those whose prime indices begin with 1.

Examples

			The prime indices of 2*9282 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(9282) = 3.
		

Crossrefs

This is the even (bisected) case of A287170, firsts A066205.
Alternate row-lengths of A356226, minima A356227(2n), maxima A356228(2n).
A001221 counts distinct prime factors, sum A001414.
A001222 counts prime indices, listed by A112798, sum A056239.
A003963 multiplies together the prime indices of n.
A073093 counts the prime indices of 2n.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Split[primeMS[2n],#1>=#2-1&]],{n,100}]
  • PARI
    A287170(n) = { my(f=factor(n)); if(#f~==0, return (0), return(#f~ - sum(i=1, #f~-1, if (primepi(f[i, 1])+1 == primepi(f[i+1, 1]), 1, 0)))); };
    A356229(n) = A287170(2*n); \\ Antti Karttunen, Jan 19 2025

Formula

a(n) = A287170(2n).

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 19 2025

A356603 Position in A356226 of first appearance of the n-th composition in standard order (row n of A066099).

Original entry on oeis.org

1, 2, 4, 10, 8, 20, 50, 110, 16, 40, 100, 220, 250, 550, 1210, 1870, 32, 80, 200, 440, 500, 1100, 2420, 3740, 1250, 2750, 6050, 9350, 13310, 20570, 31790, 43010, 64, 160, 400, 880, 1000, 2200, 4840, 7480, 2500, 5500, 12100, 18700, 26620, 41140, 63580, 86020
Offset: 0

Views

Author

Gus Wiseman, Aug 30 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The image consists of all numbers whose prime indices are odd and cover an initial interval of odd positive integers.

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      4: {1,1}
     10: {1,3}
      8: {1,1,1}
     20: {1,1,3}
     50: {1,3,3}
    110: {1,3,5}
     16: {1,1,1,1}
     40: {1,1,1,3}
    100: {1,1,3,3}
    220: {1,1,3,5}
    250: {1,3,3,3}
    550: {1,3,3,5}
   1210: {1,3,5,5}
   1870: {1,3,5,7}
		

Crossrefs

See link for sequences related to standard compositions.
The partitions with these Heinz numbers are counted by A053251.
A subset of A066208 (numbers with all odd prime indices).
Up to permutation, these are the positions of first appearances of rows in A356226. Other statistics are:
- length: A287170, firsts A066205
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
The sorted version is A356232.
An ordered version is counted by A356604.
A001221 counts distinct prime factors, sum A001414.
A073491 lists numbers with gapless prime indices, complement A073492.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stcinv[q_]:=1/2 Total[2^Accumulate[Reverse[q]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    sq=stcinv/@Table[Length/@Split[primeMS[n],#1>=#2-1&],{n,1000}];
    Table[Position[sq,k][[1,1]],{k,0,mnrm[Rest[sq]]}]

A356227 Smallest size of a maximal gapless submultiset of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 1, 2, 4, 1, 3, 1, 1, 1, 1, 1, 4, 2, 1, 3, 1, 1, 3, 1, 5, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(18564) = 1.
		

Crossrefs

Positions of first appearances are A000079.
The maximal gapless submultisets are counted by A287170, firsts A066205.
These are the row-minima of A356226, firsts A356232.
The greatest instead of smallest size is A356228.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.
A356224 counts even gapless divisors, complement A356225.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Min@@Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

a(n) = A333768(A356230(n)).
a(n) = A055396(A356231(n)).

A384881 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal runs of consecutive parts decreasing by 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 1, 3, 0, 1, 0, 2, 2, 2, 0, 1, 0, 2, 3, 3, 2, 0, 1, 0, 2, 5, 3, 2, 2, 0, 1, 0, 1, 8, 4, 4, 2, 2, 0, 1, 0, 3, 5, 10, 4, 3, 2, 2, 0, 1, 0, 2, 9, 9, 9, 5, 3, 2, 2, 0, 1, 0, 2, 11, 13, 9, 9, 4, 3, 2, 2, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 25 2025

Keywords

Examples

			The partition (5,4,2,1,1) has maximal runs ((5,4),(2,1),(1)) so is counted under T(13,3) = 23.
Row n = 9 counts the following partitions:
  9    63    333    6111    33111   411111   3111111   111111111
  54   72    441    22221   51111   2211111  21111111
  432  81    522    42111   222111
       621   531    321111
       3321  711
             3222
             4221
             4311
             5211
             32211
Triangle begins:
  1
  0  1
  0  1  1
  0  2  0  1
  0  1  3  0  1
  0  2  2  2  0  1
  0  2  3  3  2  0  1
  0  2  5  3  2  2  0  1
  0  1  8  4  4  2  2  0  1
  0  3  5 10  4  3  2  2  0  1
  0  2  9  9  9  5  3  2  2  0  1
  0  2 11 13  9  9  4  3  2  2  0  1
  0  2 13 15 17  8 10  4  3  2  2  0  1
  0  2 14 23 16 17  8  9  4  3  2  2  0  1
  0  2 16 26 26 19 16  9  9  4  3  2  2  0  1
  0  4 13 37 32 26 19 16  8  9  4  3  2  2  0  1
		

Crossrefs

Row sums are A000041.
Column k = 1 is A001227.
For distinct parts instead of maximal runs we have A116608.
The strict case appears to be A116674.
For anti-runs instead of runs we have A268193.
Partitions with distinct runs of this type are counted by A384882, gapless A384884.
For prime indices see A385213, A287170, A066205, A356229.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1==#2+1&]]==k&]],{n,0,10},{k,0,n}]
  • PARI
    tri(n) = {(n*(n+1)/2)}
    B_list(N) = {my(v = vector(N, i, 0)); v[1] = q*t; for(m=2,N, v[m] = t * (q^tri(m) + sum(i=1,m-1, q^tri(i) * v[m-i] * (q^((m-i)*(i-1))/(1 - q^(m-i)) - q^((m-i)*i) + O('q^(N-tri(i)+1)))))); v}
    A_qt(max_row) = {my(N = max_row+1, B = B_list(N), g = 1 + sum(m=1,N, B[m]/(1 - q^m)) + O('q^(N+1))); vector(N, n, Vecrev(polcoeff(g, n-1)))} \\ John Tyler Rascoe, Aug 18 2025

Formula

G.f.: 1 + Sum_{m>0} B(m,q,t)/(1 - q^m) where B(m,q,t) = t * (q^tri(m) + Sum_{i=1..m-1} q^tri(i) * B(m-i,q,t) * ((q^((m-i)*(i-1))/(1 - q^(m-i))) - q^((m-i)*i))) and tri(n) = A000217(n). - John Tyler Rascoe, Aug 18 2025

A066206 a(n) = Product_{k=1..n} prime(2k), where prime(k) is the k-th prime.

Original entry on oeis.org

3, 21, 273, 5187, 150423, 5565651, 239322993, 12684118629, 773731236369, 54934917782199, 4339858504793721, 386247406926641169, 39010988099590758069, 4174175726656211113383, 471681857112151855812279, 61790323281691893111408549, 8588854936155173142485788311
Offset: 1

Views

Author

Leroy Quet, Dec 16 2001

Keywords

Comments

From Jon E. Schoenfield, Jan 12 2022, Jan 15 2022: (Start)
Equivalently, a(n) is the product of the first n even-indexed primes.
Does r = prime(2n) * A066205(n)^2 / a(n)^2 approach a limit?
.
n A066205(n) a(n) prime(2n) r
---- -------------------- -------------------- ---------- ----------
1 2 3 3 1.33333...
10 10156396926610 54934917782199 71 2.42683...
100 4.93803636802*10^255 1.00181029905*10^257 1223 2.97141...
10^3 1.5455035248*10^3740 1.2239433562*10^3742 17389 2.77263...
10^4 1.760119173*10^48693 5.011593123*10^48695 224737 2.77208...
10^5 3.26453781*10^596726 3.25976132*10^596729 2750159 2.75822...
10^6 3.2925831*10^7045939 1.1297886*10^7045943 32452843 2.75633...
10^7 8.085113*10^81117222 9.413111*10^81117226 373587883 2.75612...
10^8 5.34067*10^916830347 2.09048*10^916830352 4222234741 2.75575...
(End)

Examples

			a(3) = prime(2) * prime(4) * prime(6) = 3 * 7 * 13 = 273.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
         `if`(n=0, 1, a(n-1)*ithprime(2*n))
        end:
    seq(a(n), n=1..17);  # Alois P. Heinz, Jan 12 2022
  • Mathematica
    FoldList[Times, Prime@ Range[2, 30, 2]] (* Michael De Vlieger, Sep 24 2017 *)
  • PARI
    { for (n=1, 100, p=1; for (k=1, n, p*=prime(2*k)); write("b066206.txt", n, " ", p) ) } \\ Harry J. Smith, Feb 05 2010
    
  • PARI
    a(n) = prod(k=1, n, prime(2*k)); \\ Michel Marcus, Jan 13 2022

A356734 Heinz numbers of integer partitions with at least one neighborless part.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 78, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Aug 26 2022

Keywords

Comments

First differs from A319630 in lacking 1 and having 42 (prime indices: {1,2,4}).
A part x is neighborless if neither x - 1 nor x + 1 are parts.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
		

Crossrefs

These partitions are counted by A356236.
The singleton case is A356237, counted by A356235 (complement A355393).
The strict case is counted by A356607, complement A356606.
The complement is A356736, counted by A355394.
A001221 counts distinct prime factors, sum A001414.
A003963 multiplies together the prime indices of n.
A007690 counts partitions with no singletons, complement A183558.
A056239 adds up prime indices, row sums of A112798, lengths A001222.
A073491 lists numbers with gapless prime indices, complement A073492.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Function[ptn,Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]@*primeMS]

A095134 Sum of the product of the first ceiling(n/2) odd-indexed primes and the product of the first floor(n/2) even-indexed primes; a(1) = 2.

Original entry on oeis.org

2, 5, 13, 31, 131, 383, 2143, 7057, 48197, 193433, 1483733, 6898961, 60231361, 293988703, 2808611363, 15253406999, 164272132459, 925319250199, 10930128162979, 65091314708809, 796351893424729, 5081275480436251
Offset: 1

Views

Author

Robert G. Wilson v, May 27 2004

Keywords

Examples

			a(5) = 2*5*11 + 3*7 = 131, a(6) = 2*5*11 + 3*7*13 = 383;
a(7) = 2*5*11*17 + 3*7*13 = 2143, a(8) = 2*5*11*17 + 3*7*13*19 = 7057.
		

Crossrefs

Programs

  • Maple
    p:= 2: R:= 2: a:= 2: b:= 1:
    for m from 1 to 10 do
      p:= nextprime(p); b:= b*p; R:= R,a+b;
      p:= nextprime(p); a:= a*p; R:= R,a+b;
    od:
    R; # Robert Israel, Dec 01 2024
  • Mathematica
    f[n_] := Product[Prime[i], {i, 2, n, 2}] + Product[Prime[i], {i, 1, n, 2}]; f[1] = 2; Table[ f[n], {n, 22}]
  • PARI
    a(n) = if (n==1, 2, vecprod(vector(floor(n/2), k, prime(2*k)))+vecprod(vector(ceil(n/2), k, prime(2*k-1)))); \\ Michel Marcus, Dec 03 2024

Formula

Sum_{i=1..n} of the product_{j=2..n, 2} p_j (A066206) and the product_{k=1..n, 2} p_j (A066205).

A356604 Number of integer compositions of n into odd parts covering an initial interval of odd positive integers.

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 5, 9, 13, 24, 40, 61, 101, 160, 257, 415, 679, 1103, 1774, 2884, 4656, 7517, 12165, 19653, 31753, 51390, 83134, 134412, 217505, 351814, 569081, 920769, 1489587, 2409992, 3899347, 6309059, 10208628, 16518910, 26729830, 43254212, 69994082
Offset: 0

Views

Author

Gus Wiseman, Aug 30 2022

Keywords

Examples

			The a(1) = 1 through a(8) = 13 compositions:
  (1)  (11)  (111)  (13)    (113)    (1113)    (133)      (1133)
                    (31)    (131)    (1131)    (313)      (1313)
                    (1111)  (311)    (1311)    (331)      (1331)
                            (11111)  (3111)    (11113)    (3113)
                                     (111111)  (11131)    (3131)
                                               (11311)    (3311)
                                               (13111)    (111113)
                                               (31111)    (111131)
                                               (1111111)  (111311)
                                                          (113111)
                                                          (131111)
                                                          (311111)
                                                          (11111111)
The a(9) = 24 compositions:
  (135)  (11133)  (1111113)  (111111111)
  (153)  (11313)  (1111131)
  (315)  (11331)  (1111311)
  (351)  (13113)  (1113111)
  (513)  (13131)  (1131111)
  (531)  (13311)  (1311111)
         (31113)  (3111111)
         (31131)
         (31311)
         (33111)
		

Crossrefs

The case of partitions is A053251, ranked by A356232 and A356603.
These compositions are ranked by the intersection of A060142 and A333217.
This is the odd initial case of A107428.
This is the odd restriction of A107429.
This is the normal/covering case of A324969 (essentially A000045).
The non-initial version is A356605.
A000041 counts partitions, compositions A011782.
A055932 lists numbers with prime indices covering an initial interval.
A066208 lists numbers with all odd prime indices, counted by A000009.

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[(#+1)/2]&]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Sep 01 2022

A356736 Heinz numbers of integer partitions with no neighborless parts.

Original entry on oeis.org

1, 6, 12, 15, 18, 24, 30, 35, 36, 45, 48, 54, 60, 72, 75, 77, 90, 96, 105, 108, 120, 135, 143, 144, 150, 162, 175, 180, 192, 210, 216, 221, 225, 240, 245, 270, 288, 300, 315, 323, 324, 360, 375, 384, 385, 405, 420, 432, 437, 450, 462, 480, 486, 525, 539, 540
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2022

Keywords

Comments

First differs from A066312 in having 1 and lacking 462.
First differs from A104210 in having 1 and lacking 42.
A part x is neighborless iff neither x - 1 nor x + 1 are parts.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   1: {}
   6: {1,2}
  12: {1,1,2}
  15: {2,3}
  18: {1,2,2}
  24: {1,1,1,2}
  30: {1,2,3}
  35: {3,4}
  36: {1,1,2,2}
  45: {2,2,3}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  60: {1,1,2,3}
  72: {1,1,1,2,2}
  75: {2,3,3}
  77: {4,5}
  90: {1,2,2,3}
  96: {1,1,1,1,1,2}
		

Crossrefs

These partitions are counted by A355394.
The singleton case is the complement of A356237.
The singleton case is counted by A355393, complement A356235.
The strict complement is A356606, counted by A356607.
The complement is A356734, counted by A356236.
A000041 counts integer partitions, strict A000009.
A001221 counts distinct prime factors, sum A001414.
A003963 multiplies together the prime indices of n.
A007690 counts partitions with no singletons, complement A183558.
A056239 adds up prime indices, row sums of A112798, lengths A001222.
A073491 lists numbers with gapless prime indices, complement A073492.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Function[ptn,!Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]@*primeMS]

A095137 Absolute difference between the product of the first floor(n/2) even-indexed primes and the product of the first floor(n/2) odd-indexed primes.

Original entry on oeis.org

2, 1, 7, 11, 89, 163, 1597, 3317, 37823, 107413, 1182887, 4232341, 49100059, 184657283, 2329965377, 10114830259, 138903895201, 622143222539, 9382665690241, 44778520855589, 686482057860331, 3598441529151191
Offset: 1

Views

Author

Robert G. Wilson v, May 28 2004

Keywords

Examples

			a(5) = 2*5*11 - 3*7 = 89, a(6) = 3*7*13 - 2*5*11 = 163;
a(7) = 2*5*11*17 - 3*7*13 = 1597, a(8) = 3*7*13*19 - 2*5*11*17 = 3317.
		

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_] := Flatten[ Table[ #[[1]], {1} ] & /@ FactorInteger[n]]; f[n_] := Abs[ Product[ Prime[i], {i, 2, n, 2}] + Product[ Prime[i], {i, 1, n, 2}]]; f[1] = 2; Table[ f[n], {n, 24}]
    Join[{2},Table[Abs[Times@@Prime[Range[1,Floor[n/2],2]]-Times@@Prime[Range[ 2,Floor[ n/2 ],2]]],{n,4,45,2}]] (* Harvey P. Dale, Jan 11 2023 *)

Formula

The absolute difference of Product_{j=1..floor(n/2)} p_(2j) (A066206) and Product_{k=1..floor(n/2)} p_(2j-1) (A066205).
Previous Showing 11-20 of 29 results. Next