cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A240964 Decimal expansion of Sum_{n>=1} n/sinh(n*Pi).

Original entry on oeis.org

0, 9, 4, 5, 7, 3, 0, 1, 9, 6, 6, 4, 7, 6, 1, 9, 3, 9, 5, 1, 3, 5, 8, 8, 9, 0, 0, 8, 5, 4, 4, 1, 3, 8, 4, 9, 3, 1, 4, 9, 5, 5, 3, 2, 9, 3, 1, 9, 2, 2, 4, 0, 1, 0, 4, 9, 7, 9, 5, 1, 5, 3, 1, 9, 5, 5, 5, 9, 2, 1, 0, 2, 7, 5, 4, 7, 6, 6, 3, 1, 1, 2, 8, 9, 7, 7, 4, 0, 1, 4, 8, 4, 9, 0, 9, 9, 6, 5, 1, 5, 2
Offset: 0

Views

Author

Jean-François Alcover, Aug 05 2014

Keywords

Comments

Prudnikov (p. 721, section 5.3.5, formula 1) has a typo, Gamma(1/4)^4 is correct, not Gamma(1/4)^2. - Vaclav Kotesovec, May 19 2022

Examples

			0.09457301966476193951358890085441384931495532931922401...
		

References

  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986).

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[Gamma[1/4]^4/(32*Pi^3) - 1/(4*Pi), 10, 100] // First]
    N[EllipticK[k]/Pi^2*(EllipticK[k] - EllipticE[k]) /. k -> 1/2, 100] (* Vaclav Kotesovec, May 19 2022 *)
  • PARI
    suminf(k=1, k/sinh(k*Pi)) \\ Vaclav Kotesovec, May 19 2022
    
  • PARI
    suminf(k=1, 1/(2*sinh((k - 1/2)*Pi)^2)) \\ Vaclav Kotesovec, May 19 2022

Formula

Gamma(1/4)^4/(32*Pi^3) - 1/(4*Pi).

A249205 Decimal expansion of the logarithmic capacity of the unit disk.

Original entry on oeis.org

5, 9, 0, 1, 7, 0, 2, 9, 9, 5, 0, 8, 0, 4, 8, 1, 1, 3, 0, 2, 2, 6, 6, 8, 9, 7, 0, 2, 7, 9, 2, 4, 4, 2, 9, 3, 6, 1, 6, 8, 5, 8, 3, 1, 7, 4, 4, 0, 7, 2, 3, 6, 4, 9, 7, 5, 7, 9, 3, 2, 1, 9, 9, 7, 0, 2, 1, 5, 2, 0, 9, 0, 3, 6, 0, 3, 5, 7, 8, 9, 7, 4, 8, 9, 2, 2, 9, 3, 0, 8, 0, 9, 7, 9, 0, 3, 9, 7, 7, 1
Offset: 0

Views

Author

Jean-François Alcover, Oct 23 2014

Keywords

Examples

			0.59017029950804811302266897027924429361685831744...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.9 Integer Chebyshev constants, p. 268.

Crossrefs

Programs

  • Mathematica
    k = (1/(4*Pi^(3/2)))*Gamma[1/4]^2; RealDigits[k, 10, 100] // First
  • PARI
    (1/(4*Pi^(3/2)))*gamma(1/4)^2 \\ Michel Marcus, Sep 03 2023

Formula

Equals (1/(4*Pi^(3/2)))*Gamma(1/4)^2.
Equals hypergeom([1/2, 1/2], [1], 1/2)/2. - Gerry Martens, Jul 31 2023

A235136 a(n) = (2*n - 1) * a(n-2) for n>1, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 3, 5, 21, 45, 231, 585, 3465, 9945, 65835, 208845, 1514205, 5221125, 40883535, 151412625, 1267389585, 4996616625, 44358635475, 184874815125, 1729986783525, 7579867420125, 74389431691575, 341094033905625, 3496303289504025, 16713607661375625
Offset: 0

Views

Author

Michael Somos, Jan 03 2014

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + 5*x^3 + 21*x^4 + 45*x^5 + 231*x^6 + 585*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := 2^n If[ OddQ[n], 2 Pochhammer[ 1/4, (n + 1)/2], Pochhammer[ 3/4, n/2]]; (* Michael Somos, Jan 16 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (-2 Gamma[5/2] HermiteH[ -3/2, x] + (3 Gamma[5/4] + 2 Gamma[7/4]) Hypergeometric1F1[ 3/4, 1/2, x^2]) / (3 Gamma[5/4]), {x, 0, n}] // FullSimplify]; (* Michael Somos, Jan 16 2014 *)
    RecurrenceTable[{a[0]==a[1]==1, a[n]==(2 n - 1) a[n - 2]}, a, {n, 25}] (* Vincenzo Librandi, Aug 08 2018 *)
  • PARI
    {a(n) = if( n<0, (-1)^(-n\2) / a(-1-n), if( n<2, 1, (2*n - 1) * a(n-2)))};

Formula

Let b(n) = a(2*n - 2) / a(2*n + 1). Then b(-n) = b(n), 0 = b(n+1) * (b(n+1) + 2*b(n+2)) + b(n) * (2*b(n+1) - 5*b(n+2)) for all n in Z.
a(n-1) + a(n-2) = A196265(n) if n>1.
a(2*n) = A008545(n). a(2*n - 1) = A007696(n). a(n) = A007662(2*n - 1).
E.g.f. A(x) =: y satisfies 0 = y * 3 + y' * 2*x - y''.
0 = a(n)*(2*a(n+1) - a(n+3)) + a(n+1)*(a(n+2)) for all n in Z. - Michael Somos, Jan 24 2014
Let b(n) = a(n - 2) / a(n + 1). Then b(-n) = (-1)^n * b(n), 0 = b(n) * (b(n+1) - 4*b(n+3)) + b(n+2) * (2*b(n+1) + b(n+3)) for all n in Z. - Michael Somos, Sep 13 2014
a(n) ~ c * sqrt(Pi) * (2*n)^(n/2+1/4) / exp(n/2), where c = 2/Gamma(1/4) if n is odd, and 1/Gamma(3/4) if n is even. - Amiram Eldar, Sep 01 2025

A071002 Binary expansion of Gamma(1/4).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1
Offset: 2

Views

Author

Benoit Cloitre, May 18 2002

Keywords

Examples

			11.1010000...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Gamma[1/4], 2, 100][[1]] (* Amiram Eldar, May 04 2022 *)

Extensions

Two 1's added in front and offset corrected by R. J. Mathar, Feb 05 2009

A078127 Decimal expansion of DirichletBeta'(1).

Original entry on oeis.org

1, 9, 2, 9, 0, 1, 3, 1, 6, 7, 9, 6, 9, 1, 2, 4, 2, 9, 3, 6, 3, 1, 8, 9, 7, 6, 4, 0, 2, 8, 0, 3, 2, 7, 8, 5, 2, 4, 5, 0, 9, 6, 8, 6, 7, 6, 2, 0, 0, 0, 7, 5, 2, 7, 1, 7, 1, 3, 4, 9, 2, 2, 7, 4, 4, 3, 6, 0, 5, 7, 0, 3, 5, 9, 2, 7, 7, 8, 7, 7, 0, 3, 9, 1, 4, 4, 3, 0, 5, 5, 1, 6, 3, 8, 7, 8, 4, 6, 0, 4, 7
Offset: 0

Views

Author

Eric W. Weisstein, Nov 19 2002

Keywords

Examples

			0.1929013167969124293631897640...
		

Crossrefs

Programs

  • Maple
    Pi/4*(gamma+log(2*Pi)-2*log(GAMMA(1/4)/GAMMA(3/4))); evalf(%) ; # R. J. Mathar, Jun 10 2024
  • Mathematica
    Prepend@@RealDigits[(Pi*(EulerGamma + 2*Log[2] + 3*Log[Pi] - 4*Log[Gamma[1/4]]))/4, 10, 101]

Formula

Equals (Pi/4)*(gamma + log(2*Pi) - 2*log(Gamma(1/4)/Gamma(3/4))), where gamma is Euler's constant and Gamma(x) is the Euler Gamma function.
Equals Sum_{k>=1} (-1)^(k+1)*log(2*k+1)/(2*k+1). - Jean-François Alcover, Aug 11 2014

A241017 Decimal expansion of Sierpiński's S constant, which appears in a series involving the function r(n), defined as the number of representations of the positive integer n as a sum of two squares. This S constant is the usual Sierpiński K constant divided by Pi.

Original entry on oeis.org

8, 2, 2, 8, 2, 5, 2, 4, 9, 6, 7, 8, 8, 4, 7, 0, 3, 2, 9, 9, 5, 3, 2, 8, 7, 1, 6, 2, 6, 1, 4, 6, 4, 9, 4, 9, 4, 7, 5, 6, 9, 3, 1, 1, 8, 8, 9, 4, 8, 5, 0, 2, 1, 8, 3, 9, 3, 8, 1, 5, 6, 1, 3, 0, 3, 7, 0, 9, 0, 9, 5, 6, 4, 4, 6, 4, 0, 1, 6, 6, 7, 5, 7, 2, 1, 9, 5, 3, 2, 5, 7, 3, 2, 3, 4, 4, 5, 3, 2, 4, 7, 2, 1, 4
Offset: 0

Views

Author

Jean-François Alcover, Aug 08 2014

Keywords

Examples

			0.822825249678847032995328716261464949475693118894850218393815613...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.10 Sierpinski's Constant, p. 123.

Crossrefs

Programs

  • Mathematica
    S = Log[4*Pi^3*Exp[2*EulerGamma]/Gamma[1/4]^4]; RealDigits[S, 10, 104] // First
  • PARI
    log(agm(sqrt(2), 1)^2/2) + 2*Euler \\ Charles R Greathouse IV, Nov 26 2024

Formula

S = gamma + beta'(1) / beta(1), where beta is Dirichlet's beta function.
S = log(Pi^2*exp(2*gamma) / (2*L^2)), where L is Gauss' lemniscate constant.
S = log(4*Pi^3*exp(2*gamma) / Gamma(1/4)^4), where gamma is Euler's constant and Gamma is Euler's Gamma function.
S = A062089 / Pi, where A062089 is Sierpiński's K constant.
S = A086058 - 1, where A086058 is the conjectured (but erroneous!) value of Masser-Gramain 'delta' constant. [updated by Vaclav Kotesovec, Apr 27 2015]
S = 2*gamma + (4/Pi)*integral_{x>0} exp(-x)*log(x)/(1-exp(-2*x)) dx.
Sum_{k=1..n} r(k)/k = Pi*(log(n) + S) + O(n^(-1/2)).
Equals 2*A001620 - A088538*A115252 [Coffey]. - R. J. Mathar, Jan 15 2021

A323755 Decimal expansion of a constant related to the asymptotics of A203475.

Original entry on oeis.org

2, 7, 4, 5, 2, 8, 3, 5, 0, 3, 3, 3, 5, 5, 2, 9, 0, 3, 8, 0, 0, 4, 0, 8, 9, 9, 3, 4, 8, 2, 5, 0, 7, 4, 2, 8, 1, 4, 2, 3, 8, 3, 7, 8, 3, 7, 7, 3, 1, 9, 0, 4, 5, 1, 1, 8, 1, 0, 7, 2, 7, 2, 3, 7, 4, 2, 6, 9, 1, 6, 7, 8, 1, 0, 5, 7, 6, 2, 7, 4, 0, 6, 2, 0, 0, 1, 6, 5, 7, 0, 3, 2, 1, 2, 1, 9, 6, 1, 2, 5, 7, 4, 4, 5, 2, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 26 2019

Keywords

Examples

			0.274528350333552903800408993482507428142383783773190451181072723742691...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[Gamma[1/4]] * E^(Pi/24) / (2^(9/8) * Pi^(9/8)), 10, 120][[1]]

Formula

Equals limit_{n->infinity} A203475(n) / (2^(n^2/2) * exp(Pi*n*(n+1)/4 - 3*n^2/2 + n) * n^(n*(n-1) - 3/4)).
Equals sqrt(Gamma(1/4)) * exp(Pi/24) / (2*Pi)^(9/8).

A068153 Continued fraction for Gamma(1/4).

Original entry on oeis.org

3, 1, 1, 1, 2, 25, 4, 9, 1, 1, 8, 4, 1, 6, 1, 1, 19, 1, 1, 4, 1, 1, 5, 5, 7, 4, 1, 7, 1, 4, 2, 1, 4, 7, 1, 6, 4, 1, 4, 14, 1, 2, 24, 3, 25, 8, 3, 1, 1, 1, 1, 4, 1, 1, 28, 1, 1, 1, 12, 1, 1, 23, 1, 2, 2, 1, 3, 1, 1, 1, 6, 1, 5, 16, 8, 6, 4, 8, 2, 9, 3, 1, 4, 75, 5, 4, 5, 1, 1, 3, 2, 1, 1, 12, 2, 1, 2, 6
Offset: 0

Views

Author

Benoit Cloitre, Mar 13 2002

Keywords

Examples

			gamma(1/4) = 3.62560990822190... = 3 + 1/(1 + 1/(1 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, Apr 20 2009
		

Crossrefs

Cf. A068466 (decimal expansion).

Programs

  • PARI
    { default(realprecision, 1080); x=contfrac(gamma(1/4)); for (n=1, 1000, write("b068153.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 20 2009

Extensions

Offset changed by Andrew Howroyd, Aug 07 2024

A196535 Decimal expansion of Sum_{j=0..oo} exp(-Pi*(2*j+1)^2).

Original entry on oeis.org

0, 4, 3, 2, 1, 3, 9, 1, 8, 2, 6, 4, 2, 9, 7, 7, 9, 8, 2, 9, 2, 0, 1, 8, 3, 8, 2, 0, 2, 7, 2, 5, 0, 3, 4, 1, 8, 4, 2, 0, 6, 0, 4, 4, 7, 7, 1, 2, 9, 3, 7, 4, 6, 3, 1, 2, 5, 2, 7, 3, 4, 4, 6, 1, 7, 8, 9, 8, 7, 1, 8, 0, 7, 2, 3, 7, 7, 5, 1, 7, 0, 4, 9, 9, 3, 1, 8, 1, 5, 8, 7, 8, 2, 5, 2, 4, 9, 0, 6, 2, 8, 4, 7, 1, 6, 0
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

Examples

			0.04321391826429779829201838202725...
		

References

  • Jolley, Summation of Series, Dover (1961) eq (114) on page 22.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986), p. 729, formula 14.

Crossrefs

Programs

  • Maple
    (root[4](2)-1)*GAMMA(1/4)/2^(11/4)/Pi^(3/4) ; evalf(%) ;
  • Mathematica
    RealDigits[ EllipticTheta[2, 0, Exp[-4*Pi]]/2, 10, 105] // First // Prepend[#, 0]&  (* Jean-François Alcover, Feb 12 2013 *)

Formula

Equals (2^(1/4)-1) * Gamma(1/4) / ( 2^(11/4) * Pi^(3/4) ).
Equals theta2(exp(-4*Pi))/2.

Extensions

12 more digits from Jean-François Alcover, Feb 12 2013

A256717 Decimal expansion of G(5/4) where G is the Barnes G-function.

Original entry on oeis.org

1, 0, 6, 5, 0, 4, 4, 5, 3, 8, 5, 3, 0, 9, 5, 5, 7, 1, 7, 1, 5, 9, 7, 1, 7, 5, 8, 3, 6, 9, 4, 9, 7, 7, 1, 4, 1, 9, 3, 7, 3, 4, 9, 0, 7, 3, 2, 6, 9, 7, 6, 1, 8, 9, 2, 2, 2, 1, 3, 9, 9, 3, 1, 5, 2, 0, 0, 4, 3, 8, 3, 7, 6, 1, 6, 8, 6, 0, 2, 2, 4, 4, 7, 6, 4, 6, 1, 5, 2, 5, 1, 0, 9, 9, 2, 8, 1, 4, 9, 1, 9, 4, 2, 3
Offset: 1

Views

Author

Jean-François Alcover, Apr 09 2015

Keywords

Examples

			1.0650445385309557171597175836949771419373490732697618922213...
		

Crossrefs

Cf. A006752 (Catalan), A068466 (Gamma(1/4)), A074962 (Glaisher), A087013 (G(1/4)), A087014 (G(1/2)), A087015 (G(3/4)), A087016 (G(3/2)), A087017 (G(5/2)).

Programs

  • Mathematica
    RealDigits[BarnesG[5/4], 10, 104] // First
    RealDigits[Exp[3/32 - Catalan/(4*Pi)]*Gamma[1/4]^(1/4)/Glaisher^(9/8), 10, 100][[1]] (* G. C. Greubel, Aug 25 2018 *)
  • PARI
    exp(3/32 - Catalan/(4*Pi))*gamma(1/4)^(1/4)/exp(3/32-9*zeta'(-1)/8) \\ Charles R Greathouse IV, Jul 01 2016

Formula

Equals exp(3/32 - Catalan/(4*Pi))*Gamma(1/4)^(1/4)/Glaisher^(9/8).
Equals G(1/4)*Gamma(1/4). - Vaclav Kotesovec, Apr 09 2015
Previous Showing 21-30 of 45 results. Next