cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 101 results. Next

A073232 Decimal expansion of ((1/e)^(1/e))^(1/e).

Original entry on oeis.org

8, 7, 3, 4, 2, 3, 0, 1, 8, 4, 9, 3, 1, 1, 6, 6, 4, 2, 9, 8, 9, 0, 3, 2, 3, 4, 8, 6, 6, 2, 5, 3, 8, 2, 0, 5, 2, 6, 2, 5, 4, 0, 9, 7, 8, 5, 8, 3, 3, 5, 9, 6, 7, 5, 0, 5, 6, 2, 1, 9, 4, 2, 1, 4, 8, 0, 1, 4, 3, 1, 6, 3, 8, 3, 1, 5, 1, 5, 0, 1, 8, 7, 4, 5, 1, 1, 7, 0, 9, 6, 3, 2, 5, 5, 2, 4, 6, 7, 1, 3, 2, 9, 2, 4
Offset: 0

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Examples

			0.87342301849311664298903234866...
		

Crossrefs

Cf. A001113 (e), A068985 (1/e), A072364 ((1/e)^(1/e)), A073231 ((1/e)^(1/e)^(1/e)), A073228 ((e^e)^e), A073227 (e^e^e).

Programs

  • Mathematica
    RealDigits[((1/E)^(1/E))^(1/E),10,120][[1]]  (* Harvey P. Dale, Apr 21 2011 *)
  • PARI
    exp(-exp(-2))

Formula

Equals e^(-e^(-2)).

A087654 Decimal expansion of D(1) where D(x) is the Dawson function.

Original entry on oeis.org

5, 3, 8, 0, 7, 9, 5, 0, 6, 9, 1, 2, 7, 6, 8, 4, 1, 9, 1, 3, 6, 3, 8, 7, 4, 2, 0, 4, 0, 7, 5, 5, 6, 7, 5, 4, 7, 9, 1, 9, 7, 5, 0, 0, 1, 7, 5, 3, 9, 3, 3, 3, 1, 8, 8, 7, 5, 2, 1, 9, 0, 9, 8, 0, 0, 2, 5, 6, 6, 5, 0, 3, 3, 3, 0, 5, 2, 7, 1, 0, 6, 2, 9, 7, 2, 6, 0, 8, 6, 1, 5, 0, 2, 7, 4, 3, 0, 8, 0, 9, 3, 8, 8, 9
Offset: 0

Views

Author

Benoit Cloitre, Sep 25 2003

Keywords

Examples

			0.5380795069127684191363874204075567547919750017539...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 42, page 407.

Programs

  • Mathematica
    RealDigits[ N[ Sqrt[Pi]*Erfi[1]/(2*E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
    RealDigits[DawsonF[1], 10, 120][[1]] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    intnum(t=0, 1, exp(t^2))/exp(1) \\ Michel Marcus, Feb 28 2023

Formula

D(1) = (1/e)*Integral_{t=0..1} exp(t^2) dt.
Equals Integral_{x=0..oo} e^(-x^2) sin(2x) dx = 1F1(1;3/2;-1). - R. J. Mathar, Jul 10 2024
Equals A099288 * sqrt(Pi)/(2e) = A099288 *A019704 * A068985. - R. J. Mathar, Jul 10 2024

A092615 Decimal expansion of e^(-1/3).

Original entry on oeis.org

7, 1, 6, 5, 3, 1, 3, 1, 0, 5, 7, 3, 7, 8, 9, 2, 5, 0, 4, 2, 5, 6, 0, 4, 0, 9, 6, 9, 2, 5, 3, 7, 9, 6, 6, 7, 4, 5, 3, 1, 1, 2, 0, 5, 9, 8, 2, 1, 4, 7, 9, 1, 5, 7, 1, 4, 0, 8, 7, 0, 2, 0, 7, 1, 2, 7, 3, 0, 4, 0, 7, 7, 2, 3, 4, 9, 0, 2, 3, 7, 9, 1, 0, 8, 7, 9, 1, 0, 8, 8, 9, 1, 5, 1, 7, 4, 9, 4, 6, 1, 5, 9, 0, 7, 8
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Examples

			0.71653131057378925042560409692537966745311205982147...
		

Crossrefs

Cf. A001113, A019774, A068985, A092041 (reciprocal).

Programs

  • Mathematica
    RealDigits[E^(-1/3),10,120][[1]] (* Harvey P. Dale, Feb 13 2012 *)

Formula

Equals lim_{x->0} (tanh(x)/x)^(1/x^2). - Amiram Eldar, Jul 04 2022

A152887 Number of descents beginning with an even number and ending with an odd number in all permutations of {1,2,...,n}.

Original entry on oeis.org

0, 1, 2, 18, 72, 720, 4320, 50400, 403200, 5443200, 54432000, 838252800, 10059033600, 174356582400, 2440992153600, 47076277248000, 753220435968000, 16005934264320000, 288106816757760000, 6690480522485760000, 133809610449715200000, 3372002183332823040000
Offset: 1

Views

Author

Emeric Deutsch, Jan 19 2009

Keywords

Comments

a(n) is the number of ways to perform the following: Divide the set {1,2,...,n} into three pairwise disjoint subsets, A,B,C so that A union B union C = {1,2,...,n}. Let A contain an odd number of elements and B contain an even number of elements. Linearly order the elements within each subset. - Geoffrey Critzer, Sep 26 2011

Examples

			a(8) = 50400 because (i) the descent pairs can be chosen in 1+2+3+4 = 10 ways, namely (2,1), (4,1), (4,3), (6,1), (6,3), (6,5), (8,1), (8,3), (8,5), (8,7); (ii) they can be placed in 7 positions, namely (1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8); (iii) the remaining 6 entries can be permuted in 6! = 720 ways; 10*7*720 = 50400.
		

References

  • Miklos Bona, A Walk Through Combinatorics, World Scientific Publishing Co., 2002, page 170.

Crossrefs

Programs

  • Magma
    [Factorial(n-1)*(2*n*(n+1)+(2*n+1)*(-1)^n-1)/16: n in [1..20]]; // Bruno Berselli, Nov 07 2011
  • Maple
    a := proc (n) if `mod`(n, 2) = 0 then factorial(n-1)*binomial((1/2)*n+1, 2) else factorial(n-1)*binomial((1/2)*n+1/2, 2) end if end proc: seq(a(n), n = 1 .. 22);
  • Mathematica
    CoefficientList[Series[x/((1 - x) (1 - x^2)^2), {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Geoffrey Critzer, Mar 03 2010 *)

Formula

a(2n) = (2n-1)!*C(n+1,2); a(2n+1) = (2n)!*C(n+1,2).
E.g.f.: x/((1-x^2)^2*(1-x)). - Geoffrey Critzer, Mar 03 2010
a(n) = (n-1)!*(2*n*(n+1)+(2*n+1)*(-1)^n-1)/16. - Bruno Berselli, Nov 07 2011
D-finite with recurrence a(n) -2*a(n-1) +(-n^2+2)*a(n-2) +n*(n-3)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
Sum_{n>=2} 1/a(n) = 4*(CoshIntegral(1) - gamma - 1/e) + 2 = 4*(A099284 - A001620 - A068985) + 2. - Amiram Eldar, Jan 22 2023

A246665 Decimal expansion of the asymptotic probability of success in the full-information secretary problem with uniform distribution when the number of applicants is also uniformly distributed.

Original entry on oeis.org

4, 3, 5, 1, 7, 0, 8, 0, 5, 5, 8, 0, 1, 2, 7, 6, 5, 8, 0, 5, 9, 1, 8, 9, 9, 1, 2, 8, 4, 7, 8, 5, 8, 4, 1, 0, 4, 2, 7, 9, 6, 2, 5, 9, 4, 7, 5, 3, 4, 7, 0, 2, 4, 7, 0, 2, 9, 7, 9, 1, 2, 3, 0, 4, 4, 3, 9, 0, 6, 6, 5, 8, 7, 5, 4, 4, 3, 0, 3, 3, 5, 7, 8, 4, 9, 9, 7, 6, 6, 2, 8, 6, 8, 5, 0, 2, 6, 5, 9
Offset: 0

Views

Author

Jean-François Alcover, Sep 01 2014

Keywords

Comments

In this variant of the secretary problem, the applicants' values are independently distributed on a known interval, like in A242674; and the number of applicants is itself a random variable with uniform distribution on 1..n (and then the limit n -> infinity is taken), like in A325905. So we have more information than in the variant considered in A325905 but less information than in the variant considered in A242674. Hence A325905 < this constant < A242674. - Andrey Zabolotskiy, Sep 14 2019

Examples

			0.43517080558012765805918991284785841042796259475347024702979123...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 361.

Crossrefs

Programs

  • Mathematica
    a = x /. FindRoot[E^x*(1 - EulerGamma - Log[x] + ExpIntegralEi[-x]) - (EulerGamma + Log[x] - ExpIntegralEi[x]) == 1, {x, 2}, WorkingPrecision -> 102]; (1 - E^a)*ExpIntegralEi[-a] - (E^-a + a*ExpIntegralEi[-a])*(EulerGamma + Log[a] - ExpIntegralEi[a]) // RealDigits // First

Formula

(1 - e^a)*Ei(-a) - (e^(-a) + a*Ei(-a))*(gamma + log(a) - Ei(a)), where a is A246664, gamma is Euler's constant and Ei is the exponential integral function.

A300916 Decimal expansion of the first derivative of the infinite power tower function x^x^x... at x = 1/e.

Original entry on oeis.org

5, 5, 7, 9, 1, 9, 2, 8, 2, 2, 5, 5, 4, 1, 6, 0, 4, 6, 7, 7, 3, 8, 6, 4, 7, 3, 3, 1, 3, 7, 2, 8, 4, 3, 2, 5, 2, 6, 8, 0, 5, 9, 5, 2, 2, 1, 4, 7, 0, 0, 0, 5, 6, 8, 8, 5, 6, 8, 6, 1, 6, 7, 8, 6, 6, 5, 6, 6, 9, 1, 6, 8, 0, 8, 0, 0, 6, 2, 9, 0, 4, 7, 4, 3, 6, 9, 7, 5, 4, 6, 6, 9, 3, 4, 2, 8, 0, 5, 7, 8, 8, 8, 4, 1, 8, 2
Offset: 0

Views

Author

Alois P. Heinz, Mar 16 2018

Keywords

Examples

			0.557919282255416046773864733137284325268059522147000568856861678665669168...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E*Exp[-2*LambertW[1]]/(1+LambertW[1]), 10, 100][[1]] (* G. C. Greubel, Sep 09 2018 *)
  • PARI
    exp(1)*exp(-2*lambertw(1))/(1+lambertw(1)) \\ Michel Marcus, Mar 16 2018

Formula

Equals exp(1)*exp(-2*LambertW(1))/(1+LambertW(1)).

A052521 Number of pairs of sequences of cardinality at least 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 10080, 120960, 1451520, 18144000, 239500800, 3353011200, 49816166400, 784604620800, 13076743680000, 230150688768000, 4268249137152000, 83230858174464000, 1703031405723648000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. sequences with formula (n + k)*n! listed in A282466.

Programs

  • GAP
    Concatenation([0,0,0,0,0,0], List([6..20], n-> (n-5)*Factorial(n))); # G. C. Greubel, May 13 2019
  • Magma
    [n le 5 select 0 else (n-5)*Factorial(n): n in [0..20]]; // G. C. Greubel, May 13 2019
    
  • Maple
    spec := [S,{B=Sequence(Z,3 <= card), S=Prod(B,B)},labeled]: # Pairs spec
    seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    Table[If[n<6, 0, (n-5)*n!], {n,0,20}] (* G. C. Greubel, May 13 2019 *)
  • PARI
    {a(n) = if(n<6, 0, (n-5)*n!)}; \\ G. C. Greubel, May 13 2019
    
  • Sage
    [0,0,0,0,0,0]+[(n-5)*factorial(n) for n in (6..20)] # G. C. Greubel, May 13 2019
    

Formula

E.g.f.: x^6/(1-x)^2.
(n-5)*a(n+1) + (4 + 3*n - n^2)*a(n) = 0, with a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = 0, a(6) = 720.
a(n) = (n-5)*n!.
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=6} 1/a(n) = 5477/7200 - 17*e/60 - gamma/120 + Ei(1)/120 = 5477/7200 - (17/60)*A001113 - (1/120)*A001620 + A091725/120.
Sum_{n>=6} (-1)^n/a(n) = 403/7200 - 1/(6*e) + gamma/120 - Ei(-1)/120 = 403/7200 - (1/6)*A068985 + (1/120)*A001620 + (1/120)*A099285. (End)

A073231 Decimal expansion of (1/e)^(1/e)^(1/e).

Original entry on oeis.org

5, 0, 0, 4, 7, 3, 5, 0, 0, 5, 6, 3, 6, 3, 6, 8, 4, 0, 5, 4, 5, 1, 3, 4, 9, 0, 1, 3, 3, 7, 9, 0, 4, 5, 7, 2, 8, 0, 3, 4, 5, 3, 2, 1, 5, 3, 4, 2, 2, 8, 3, 0, 0, 6, 4, 9, 7, 9, 0, 9, 3, 5, 2, 7, 8, 3, 7, 5, 7, 3, 2, 1, 1, 6, 2, 6, 1, 4, 3, 3, 4, 4, 3, 5, 1, 0, 6, 5, 0, 8, 2, 6, 5, 0, 9, 6, 5, 7, 5, 8, 9, 9, 3, 4
Offset: 0

Views

Author

Rick L. Shepherd, Jul 22 2002

Keywords

Examples

			0.50047350056363684054513490133...
		

Crossrefs

Cf. A001113 (e), A068985 (1/e), A072364 ((1/e)^(1/e)), A030178 (limit of (1/e)^(1/e)^...^(1/e)), A073232 (((1/e)^(1/e))^(1/e)), A073227 (e^e^e).

Programs

  • Mathematica
    With[{c=1/E},RealDigits[c^c^c,10,120][[1]]] (* Harvey P. Dale, Jul 16 2025 *)
  • PARI
    exp(-1)^exp(-1)^exp(-1)

A092554 Decimal expansion of e^(-3).

Original entry on oeis.org

0, 4, 9, 7, 8, 7, 0, 6, 8, 3, 6, 7, 8, 6, 3, 9, 4, 2, 9, 7, 9, 3, 4, 2, 4, 1, 5, 6, 5, 0, 0, 6, 1, 7, 7, 6, 6, 3, 1, 6, 9, 9, 5, 9, 2, 1, 8, 8, 4, 2, 3, 2, 1, 5, 5, 6, 7, 6, 2, 7, 7, 2, 7, 6, 0, 6, 0, 6, 0, 6, 6, 7, 7, 3, 0, 1, 9, 9, 5, 5, 0, 1, 5, 4, 0, 5, 4, 2, 4, 4, 2, 3, 6, 6, 3, 3, 3, 4, 4, 5, 2, 6, 4, 0, 1
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 09 2004

Keywords

Examples

			0.049787068367863942979342415650061776631699592188423...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[E^-3, 10, 100, -1]] (* Paolo Xausa, Feb 09 2025 *)
  • PARI
    exp(-3) \\ Michel Marcus, May 10 2022

A092555 Decimal expansion of e^(-4).

Original entry on oeis.org

0, 1, 8, 3, 1, 5, 6, 3, 8, 8, 8, 8, 7, 3, 4, 1, 8, 0, 2, 9, 3, 7, 1, 8, 0, 2, 1, 2, 7, 3, 2, 4, 1, 2, 4, 2, 2, 1, 1, 9, 1, 2, 0, 6, 7, 5, 5, 3, 4, 7, 5, 5, 9, 4, 7, 6, 9, 5, 9, 9, 9, 2, 7, 4, 3, 9, 2, 5, 0, 4, 3, 1, 5, 9, 8, 1, 1, 4, 1, 2, 2, 6, 8, 7, 3, 6, 9, 4, 9, 8, 1, 2, 8, 9, 0, 2, 0, 5, 1, 7, 2, 9, 5, 5, 5
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 09 2004

Keywords

Comments

This is one of Rényi's parking constants. - Alonso del Arte, Dec 28 2013

Examples

			0.0183156388887...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press (2003): 280.

Crossrefs

Cf. A019774, A001113, A068985, A092553 (e^(-2)), A092554 (e^(-3)).

Programs

  • Mathematica
    RealDigits[E^(-4), 10, 100][[1]] (* Alonso del Arte, Dec 28 2013 *)
Previous Showing 41-50 of 101 results. Next