1, 0, 2, 0, 3, 4, 0, 5, 6, 8, 0, 7, 9, 12, 16, 0, 11, 10, 18, 24, 32, 0, 13, 14, 20, 36, 48, 64, 0, 17, 15, 27, 40, 72, 96, 128, 0, 19, 21, 28, 54, 80, 144, 192, 256, 0, 23, 22, 30, 56, 108, 160, 288, 384, 512, 0, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024
Offset: 0
A120042
Number of 11-almost primes 11ap such that 2^n < 11ap <= 2^(n+1).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 8, 22, 47, 103, 234, 490, 1078, 2261, 4844, 10294, 21659, 45609, 95580, 200422, 417715, 871452, 1811412, 3761623, 7798409, 16142081, 33373093, 68906782, 142120436, 292797806, 602653984, 1239225631
Offset: 0
(2^11, 2^12] there is one semiprime, namely 3072. 2048 was counted in the previous entry.
Cf.
A069272,
A036378,
A120033,
A120034,
A120035,
A120036,
A120037,
A120038,
A120039,
A120040,
A120041,
A120042,
A120043.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
t = Table[AlmostPrimePi[11, 2^n], {n, 0, 30}]; Rest@t - Most@t
-
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A120042(n):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def almostprimepi(n, k): return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
return -almostprimepi(m:=1<Chai Wah Wu, Jun 17 2025
A125149
a(n) is the least k such that the n-almost prime count is positive and equal to the (n-1)-almost prime count. a(0) = 1.
Original entry on oeis.org
1, 2, 10, 15495, 151165506066
Offset: 0
a(1) = 2 since 1 has no prime factors and 2 has one prime factor, therefore prime factor counts of 0 and 1 occur equally often in the first 2 integers.
a(2) = 10 since there are 4 primes {2, 3, 5 & 7} and 4 semiprimes {4, 6, 9 & 10} less than or equal to 10.
a(4) = 151165506066 since there are 32437255807 4-almost primes and 3-almost primes <= a(4).
Sequences listing r-almost primes, that is, k such that
A001222(k) = r:
A000040 (r = 1),
A001358 (r = 2),
A014612 (r = 3),
A014613 (r = 4),
A014614 (r = 5),
A046306 (r = 6),
A046308 (r = 7),
A046310 (r = 8),
A046312 (r = 9),
A046314 (r = 10),
A069272 (r = 11),
A069273 (r = 12),
A069274 (r = 13),
A069275 (r = 14),
A069276 (r = 15),
A069277 (r = 16),
A069278 (r = 17),
A069279 (r = 18),
A069280 (r = 19),
A069281 (r = 20).
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
f[n_] := Block[{k = 2^n}, While[AlmostPrimePi[n, k] < AlmostPrimePi[n - 1, k], k++ ]; k];
Changed 33 to 34 in a comment. -
T. D. Noe, Aug 11 2010
A349030
Lucas-Carmichael numbers with 11 prime factors.
Original entry on oeis.org
20576473996736735, 42380075646230399, 75943207554554879, 83668951228080959, 96195222056687039, 116436396482735615, 132525862783734959, 134052021887096159, 162544912900261199, 175900784368936319, 186326804496197519, 190523141606006495, 196467189590024639
Offset: 1
20576473996736735 = 5*7*11*17*23*31*47*53*71*107*233 and 6, 8, 12, 18, 24, 32, 48, 54, 72, 108, and 234 all divide 20576473996736736.
Cf.
A216928 (least Lucas-Carmichael number with n prime factors).
A101696
a(n) = sum(i=1,n)(i-th i-almost prime). Cumulative sums of A101695.
Original entry on oeis.org
2, 8, 26, 66, 174, 398, 878, 2174, 4862, 10494, 22014, 45054, 98302, 222718, 480766, 1021438, 2127358, 4355582, 8943102, 18773502, 38696446, 79590910, 175142398, 368080382, 764442110, 1586525694, 3247470078, 6644856318, 13489960446
Offset: 1
a(1) = first 1-almost prime = first prime = A000040(1) = 2.
a(2) = 2 + 2nd 2-almost prime = 2 + A001358(2) = 2+ 6 = 8.
a(3) = a(2) + 3rd 3-almost prime = 8+A014612(3) = 8+18 = 26.
a(4) = a(3) + 4th 4-almost prime = 26+A014613(4) = 26+40 = 66.
a(5) = a(4) + 5th 5-almost prime = 66+A014614(5) = 66+108=174.
...
a(12) = a(11) + 12th 12-almost prime = 22014 + 23040 = 45054 (the first nontrivial palindrome in the sequence).
Cf.
A000040,
A001358,
A014612,
A014613,
A046314,
A046306,
A046308,
A046310,
A046312,
A046314,
A069272,
A069273,
A069274,
A069275,
A069276,
A069277,
A069278,
A069279,
A069280,
A069281,
A101637,
A101638,
A101605,
A101606,
A101695.
A337112
Smallest term of A337081 that has exactly n prime factors, or 0 if no such term exists.
Original entry on oeis.org
0, 4, 0, 90, 675, 1134, 6318, 4374, 32805, 255879, 1003833, 531441, 327544803, 20751953125, 225830078125, 91552734375, 1068115234375, 23651123046875, 316619873046875, 1697540283203125, 13256072998046875, 85353851318359375, 541210174560546875, 4518032073974609375, 58233737945556640625
Offset: 1
Cf.
A056472 (all factorizations of n).
Cf. r-almost primes:
A000040 (r = 1),
A001358 (r = 2),
A014612 (r = 3),
A014613 (r = 4),
A014614 (r = 5),
A046306 (r = 6),
A046308 (r = 7),
A046310 (r = 8),
A046312 (r = 9),
A046314 (r = 10),
A069272 (r = 11),
A069273 (r = 12),
A069274 (r = 13),
A069275 (r = 14),
A069276 (r = 15),
A069277 (r = 16),
A069278 (r = 17),
A069279 (r = 18),
A069280 (r = 19),
A069281 (r = 20).
A338443
Carmichael numbers with 11 prime factors.
Original entry on oeis.org
60977817398996785, 105083995864811041, 107473646345582881, 132819104923908481, 145671955835893201, 161802381510126721, 165167398073764801, 206063729626916161, 263076030916096321, 292433912163313921, 292561243007134465, 337365329710615921, 388219799621120545
Offset: 1
60977817398996785 = 5*7*17*19*23*37*53*73*79*89*233 and 4, 6, 16, 18, 22, 36, 52, 72, 78, 88, 232 all divide 60977817398996784.
Cf.
A006931 (Least Carmichael number with n prime factors).
Cf.
A299710 (Number of terms less than 10^n).
Comments