cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 63 results. Next

A276076 Factorial base exp-function: digits in factorial base representation of n become the exponents of successive prime factors whose product a(n) is.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450, 3675, 7350, 11025, 22050, 6125, 12250, 18375, 36750, 55125, 110250, 343
Offset: 0

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the digit in one-based position k of the factorial base representation of n. See the examples.

Examples

			   n  A007623   polynomial     encoded as             a(n)
   -------------------------------------------------------
   0       0    0-polynomial   (empty product)        = 1
   1       1    1*x^0          prime(1)^1             = 2
   2      10    1*x^1          prime(2)^1             = 3
   3      11    1*x^1 + 1*x^0  prime(2) * prime(1)    = 6
   4      20    2*x^1          prime(2)^2             = 9
   5      21    2*x^1 + 1*x^0  prime(2)^2 * prime(1)  = 18
   6     100    1*x^2          prime(3)^1             = 5
   7     101    1*x^2 + 1*x^0  prime(3) * prime(1)    = 10
and:
  23     321  3*x^2 + 2*x + 1  prime(3)^3 * prime(2)^2 * prime(1)
                                      = 5^3 * 3^2 * 2 = 2250.
		

Crossrefs

Cf. A276075 (a left inverse).
Cf. A276078 (same terms in ascending order).
Cf. also A275733, A275734, A275735, A275725 for other such encodings of factorial base related polynomials, and A276086 for a primorial base analog.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, p = 2, q = 1}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, q *= p^r; p = NextPrime[p]; m++]; q]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)

Formula

a(0) = 1, for n >= 1, a(n) = A275733(n) * a(A276009(n)).
Or: for n >= 1, a(n) = a(A257687(n)) * A000040(A084558(n))^A099563(n).
Other identities.
For all n >= 0:
A276075(a(n)) = n.
A001221(a(n)) = A060130(n).
A001222(a(n)) = A034968(n).
A051903(a(n)) = A246359(n).
A048675(a(n)) = A276073(n).
A248663(a(n)) = A276074(n).
a(A007489(n)) = A002110(n).
a(A059590(n)) = A019565(n).
For all n >= 1:
a(A000142(n)) = A000040(n).
a(A033312(n)) = A076954(n-1).
From Antti Karttunen, Apr 18 2022: (Start)
a(n) = A276086(A351576(n)).
A276085(a(n)) = A351576(n)
A003557(a(n)) = A351577(n).
A003415(a(n)) = A351950(n).
A069359(a(n)) = A351951(n).
A083345(a(n)) = A342001(a(n)) = A351952(n).
A351945(a(n)) = A351954(n).
A181819(a(n)) = A275735(n).
(End)
lambda(a(n)) = A262725(n+1), where lambda is Liouville's function, A008836. - Antti Karttunen and Peter Munn, Aug 09 2024

Extensions

Name changed by Antti Karttunen, Apr 18 2022

A054377 Primary pseudoperfect numbers: numbers n > 1 such that 1/n + sum 1/p = 1, where the sum is over the primes p | n.

Original entry on oeis.org

2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
Offset: 1

Views

Author

Keywords

Comments

Primary pseudoperfect numbers are the solutions of the "differential equation" n' = n-1, where n' is the arithmetic derivative of n. - Paolo P. Lava, Nov 16 2009
Same as n > 1 such that 1 + sum n/p = n (and the only known numbers n > 1 satisfying the weaker condition that 1 + sum n/p is divisible by n). Hence a(n) is squarefree, and is pseudoperfect if n > 1. Remarkably, a(n) has exactly n (distinct) prime factors for n < 9. - Jonathan Sondow, Apr 21 2013
From the Wikipedia article: it is unknown whether there are infinitely many primary pseudoperfect numbers, or whether there are any odd primary pseudoperfect numbers. - Daniel Forgues, May 27 2013
Since the arithmetic derivative of a prime p is p' = 1, 2 is obviously the only prime in the sequence. - Daniel Forgues, May 29 2013
Just as 1 is not a prime number, 1 is also not a primary pseudoperfect number, according to the original definition by Butske, Jaje, and Mayernik, as well as Wikipedia and MathWorld. - Jonathan Sondow, Dec 01 2013
Is it always true that if a primary pseudoperfect number N > 2 is adjacent to a prime N-1 or N+1, then in fact N lies between twin primes N-1, N+1? See A235139. - Jonathan Sondow, Jan 05 2014
Also, integers n > 1 such that A069359(n) = n - 1. - Jonathan Sondow, Apr 16 2014

Examples

			From _Daniel Forgues_, May 24 2013: (Start)
With a(1) = 2, we have 1/2 + 1/2 = (1 + 1)/2 = 1;
with a(2) = 6 = 2 * 3, we have
  1/2 + 1/3 + 1/6 = (3 + 2 + 1)/6 = (1*3 + 3)/(2*3) = (1 + 1)/2 = 1;
with a(3) = 42 = 6 * 7, we have
  1/2 + 1/3 + 1/7 + 1/42 = (21 + 14 + 6 + 1)/42 =
  (3*7 + 2*7 + 7)/(6*7) = (3 + 2 + 1)/6 = 1;
with a(4) = 1806 = 42 * 43, we have
  1/2 + 1/3 + 1/7 + 1/43 + 1/1806 = (903 + 602 + 258 + 42 + 1)/1806 =
  (21*43 + 14*43 + 6*43 + 43)/(42*43) = (21 + 14 + 6 + 1)/42 = 1;
with a(5) = 47058 (not oblong number), we have
  1/2 + 1/3 + 1/11 + 1/23 + 1/31 + 1/47058 =
  (23529 + 15686 + 4278 + 2046 + 1518 + 1)/47058 = 1.
For n = 1 to 8, a(n) has n prime factors:
  a(1) = 2
  a(2) = 2 * 3
  a(3) = 2 * 3 *  7
  a(4) = 2 * 3 *  7 * 43
  a(5) = 2 * 3 * 11 * 23 *  31
  a(6) = 2 * 3 * 11 * 23 *  31 * 47059
  a(7) = 2 * 3 * 11 * 17 * 101 *   149 *       3109
  a(8) = 2 * 3 * 11 * 23 *  31 * 47059 * 2217342227 * 1729101023519
If a(n)+1 is prime, then a(n)*[a(n)+1] is also primary pseudoperfect. We have the chains: a(1) -> a(2) -> a(3) -> a(4); a(5) -> a(6). (End)
A primary pseudoperfect number (greater than 2) is oblong if and only if it is not the initial member of a chain. - _Daniel Forgues_, May 29 2013
If a(n)-1 is prime, then a(n)*(a(n)-1) is a Giuga number (A007850). This occurs for a(2), a(3), and a(5). See A235139 and the link "The p-adic order . . .", Theorem 8 and Example 1. - _Jonathan Sondow_, Jan 06 2014
		

Crossrefs

Programs

  • Mathematica
    pQ[n_] := (f = FactorInteger[n]; 1/n + Sum[1/f[[i]][[1]], {i, Length[f]}] == 1)
    Select[Range[2, 10^6], pQ[#] &] (* Robert Price, Mar 14 2020 *)
  • PARI
    isok(n) = if (n > 1, my(f=factor(n)[,1]); 1/n + sum(k=1, #f, 1/f[k]) == 1); \\ Michel Marcus, Oct 05 2017
  • Python
    from sympy import primefactors
    A054377 = [n for n in range(2,10**5) if sum([n/p for p in primefactors(n)]) +1 == n] # Chai Wah Wu, Aug 20 2014
    

Formula

A031971(a(n)) (mod a(n)) = A233045(n). - Jonathan Sondow, Dec 11 2013
A069359(a(n)) = a(n) - 1. - Jonathan Sondow, Apr 16 2014
a(n) == 36*(n-2) + 6 (mod 288) for n = 2,3,..,8. - Kieren MacMillan and Jonathan Sondow, Sep 20 2017

A349394 a(p^e) = p^(e-1) for prime powers, a(n) = 0 for all other n; Dirichlet convolution of A003415 (arithmetic derivative of n) with A055615 (Dirichlet inverse of n).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 4, 3, 0, 1, 0, 1, 0, 0, 8, 1, 0, 1, 0, 0, 0, 1, 0, 5, 0, 9, 0, 1, 0, 1, 16, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 7, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 32, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 27, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Dirichlet convolution of this sequence with Euler phi (A000010) is A300251.
Convolving this sequence with sigma (A000203) produces A319684.
With a(1) = 1 instead of 0, this would be the Dirichlet convolution of A129283 (A003415(n)+n) with A055615. Thus when we subtract A063524 from that convolution, we get this sequence. (See also A349434). Compare also to the convolution of A069359 (sequence agreeing with A003415 on squarefree numbers) with A055615, which is the characteristic function of primes, A010051. - Antti Karttunen, Nov 20 2021

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Primes
    a n = case factorise n of
        [(p,e)] -> unPrime p^(e-1) :: Int
         -> 0 -- _Sebastian Karlsson, Nov 19 2021
  • Mathematica
    f[p_, e_] := e/p; d[1] = 0; d[n_] := n * Plus @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, # * MoebiusMu[#] * d[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A055615(n) = (n*moebius(n));
    A349394(n) = sumdiv(n,d,A003415(n/d)*A055615(d));
    
  • PARI
    A349394(n) = { my(p=0,e); if((e=isprimepower(n,&p)),p^(e-1),0); }; \\ (After Sebastian Karlsson's new formula) - Antti Karttunen, Nov 20 2021
    

Formula

a(n) = Sum_{d|n} A003415(n/d) * A055615(d).
a(n) = 0 unless n is a prime power (A246655), in which case a(p^e) = p^(e-1). - Sebastian Karlsson, Nov 19 2021
a(n) = A003557(n) * A069513(n). [From above] - Antti Karttunen, Nov 20 2021
Dirichlet g.f.: Sum_{p prime} 1/(p^s-p) [Follows from the D.g.f. of A003415 proved by Haukkanen et al.]. - Sebastian Karlsson, Nov 25 2021
Sum_{k=1..n} a(k) has an average value c*n, where c = A137245 = Sum_{primes p} 1/(p*log(p)) = 1.63661632335... - Vaclav Kotesovec, Mar 03 2023

Extensions

Added Sebastian Karlsson's formula as the new primary definition - Antti Karttunen, Nov 20 2021

A323599 Dirichlet convolution of the identity function with omega.

Original entry on oeis.org

0, 1, 1, 3, 1, 7, 1, 7, 4, 9, 1, 19, 1, 11, 10, 15, 1, 25, 1, 25, 12, 15, 1, 43, 6, 17, 13, 31, 1, 54, 1, 31, 16, 21, 14, 67, 1, 23, 18, 57, 1, 68, 1, 43, 37, 27, 1, 91, 8, 49, 22, 49, 1, 79, 18, 71, 24, 33, 1, 142, 1, 35, 45, 63, 20, 96, 1, 61, 28, 90, 1, 151, 1, 41, 55
Offset: 1

Views

Author

Torlach Rush, Jan 18 2019

Keywords

Comments

a(n) = omega(n) = 1 iff n is prime.
a(n) = A323600(n) = 1 iff n is prime.
a(n) = A323600(n) - 1 = 1 iff n is the square of a prime.
a(n) = A323600(n) - 2 = 2 iff n is a squarefree semiprime.
a(n) = A323600(n) - (p + 2) if n is the cube of a prime p.

Crossrefs

Inverse Möbius transform of A069359.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(d*nops(factorset(n/d)), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 28 2019
  • Mathematica
    Table[DivisorSum[n, # PrimeNu[n/#] &], {n, 75}] (* Michael De Vlieger, Jan 27 2019 *)
  • PARI
    a(n) = sumdiv(n, d, d*omega(n/d)); \\ Michel Marcus, Jan 22 2019

Formula

a(n) = Sum_{d|n} d * A001221(n/d).
a(n) = Sum_{p|n} sigma(n/p) where p is prime and sigma(n) = A000203(n). - Ridouane Oudra, Apr 28 2019
a(n) = Sum_{d|n} A069359(d), a(n) = A276085(A329380(n)). - Antti Karttunen, Nov 12 2019
From Torlach Rush, Mar 23 2024: (Start)
For p in primes: (Start)
a(p^(k+1)) = a(p^k) + p^k, k >= 0.
a(p^2) = p + 1.
(End)
a(2^k) = 2^k - 1, k >= 0.
(End)

A326690 Denominator of the fraction (Sum_{prime p | n} 1/p - 1/n).

Original entry on oeis.org

1, 1, 1, 4, 1, 3, 1, 8, 9, 5, 1, 4, 1, 7, 15, 16, 1, 9, 1, 20, 7, 11, 1, 24, 25, 13, 27, 28, 1, 1, 1, 32, 33, 17, 35, 36, 1, 19, 13, 40, 1, 21, 1, 44, 45, 23, 1, 16, 49, 25, 51, 52, 1, 27, 11, 8, 19, 29, 1, 60, 1, 31, 63, 64, 65, 11, 1, 68, 69, 35, 1, 72
Offset: 1

Views

Author

Jonathan Sondow, Jul 18 2019

Keywords

Comments

Theorem. If n is a prime or a Carmichael number, then a(n) = A309132(n) = denominator of (N(n-1)/n + D(n-1)/n^2), where B(k) = N(k)/D(k) is the k-th Bernoulli number. This is a generalization of Theorem 1 in A309132 that A309132(p) = 1 if p is a prime. The proof generalizes that in A309132. As an application of Theorem, for n a prime or a Carmichael number one can compute A309132(n) without calculating Bernoulli numbers; see A309268.
A composite number n is a Giuga number A007850 if and only if a(n) = 1. (In fact, Sum_{prime p | n} 1/p - 1/n = 1 for all known Giuga numbers n.)
Semiprimes m = pq such that 1/p + 1/q - 1/m = p/q are exactly A190275. - Amiram Eldar and Thomas Ordowski, Jul 22 2019
The preceding comment may be rephrased as "Semiprimes m = pq such that A326689(m) = p and a(m) = q are exactly A190275." - Jonathan Sondow, Jul 22 2019
More generally, semiprimes m = pq such that 1/p + 1/q - 1/m = P/Q are exactly A190273, where P <> Q are primes. In other words, semiprimes m such that A326689(m) is prime and a(m) is prime are exactly A190273. - Amiram Eldar and Thomas Ordowski, Jul 25 2019

Examples

			-1/1, 0/1, 0/1, 1/4, 0/1, 2/3, 0/1, 3/8, 2/9, 3/5, 0/1, 3/4, 0/1, 4/7, 7/15, 7/16, 0/1, 7/9, 0/1, 13/20, 3/7, 6/11, 0/1, 19/24, 4/25, 7/13, 8/27, 17/28, 0/1, 1/1
a(12) = denominator of (Sum_{prime p | 12} 1/p - 1/12) = denominator of (1/2 + 1/3 - 1/12) = denominator of 3/4 = 4.
Computing A309132(561) involves numerator(B(560)) which has 865 digits. But 561 is a Carmichael number, so Theorem implies A309132(561) = a(561) = denominator(1/3 + 1/11 + 1/17 - 1/561) = denominator(90/187) = 187.
		

Crossrefs

Numerators are A326689. Quotients n/a(n) are A326691.
Cf. A069359, A007947 (denominator of Sum_{prime p | n} 1/p).

Programs

  • Magma
    [1] cat [Denominator(&+[1/p:p in PrimeDivisors(k)]-1/k):k in [2..72]]; // Marius A. Burtea, Jul 27 2019
  • Maple
    A326690 := n -> denom((A069359(n)-1)/n):
    seq(A326690(n), n=1..72); # Peter Luschny, Jul 22 2019
  • Mathematica
    PrimeFactors[n_] := Select[Divisors[n], PrimeQ];
    f[n_] := Denominator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n];
    Table[ f[n], {n, 100}]
  • PARI
    a(n) = denominator(sumdiv(n, d, isprime(d)/d) - 1/n); \\ Michel Marcus, Jul 19 2019
    
  • SageMath
    p = lambda n: [n//f[0] for f in factor(n)]
    A326690 = lambda n: ((sum(p(n)) - 1)/n).denominator()
    [A326690(n) for n in (1..72)] # Peter Luschny, Jul 22 2019
    

Formula

a(n) = 1 if n is a prime or a Giuga number A007850.
a(n) = denominator of (N(n-1)/n + D(n-1)/n^2) if n is a Carmichael number A002997.
a(n) = denominator((A069359(n) - 1)/n). - Peter Luschny, Jul 22 2019

A117494 a(n) is the number of m's, 1 <= m <= n, where gcd(m,n) is prime.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 2, 2, 5, 1, 4, 1, 7, 6, 4, 1, 8, 1, 6, 8, 11, 1, 8, 4, 13, 6, 8, 1, 14, 1, 8, 12, 17, 10, 10, 1, 19, 14, 12, 1, 20, 1, 12, 14, 23, 1, 16, 6, 24, 18, 14, 1, 24, 14, 16, 20, 29, 1, 20, 1, 31, 18, 16, 16, 32, 1, 18, 24, 34, 1, 20, 1, 37, 28, 20, 16, 38, 1, 24, 18, 41, 1, 28
Offset: 1

Views

Author

Leroy Quet, Mar 22 2006

Keywords

Comments

Dirichlet convolution of A000010 (Euler phi) and A010051 (characteristic function of primes), therefore also Möbius transform of A069359. - Antti Karttunen, Nov 17 2021

Examples

			Of the positive integers <= 12, exactly four (2, 3, 9 and 10) have a GCD with 12 that is prime. (gcd(2,12) = 2, gcd(3,12) = 3, gcd(9,12) = 3, gcd(10,12) = 2.)
So a(12) = 4.
		

Crossrefs

Coincides with A300251 on squarefree numbers, A005117.

Programs

  • Maple
    a:=proc(n) local c,m: c:=0: for m from 1 to n do if isprime(gcd(m,n))=true then c:=c+1 else c:=c fi od: end: seq(a(n),n=1..100); # Emeric Deutsch, Apr 01 2006
  • Mathematica
    f[n_] := Length@ Select[GCD[n, Range@n], PrimeQ@ # &]; Array[f, 84] (* Robert G. Wilson v, Apr 06 2006 *)
    Table[Count[Range@ n, ?(PrimeQ@ GCD[#, n] &)], {n, 84}] (* _Michael De Vlieger, Feb 25 2018 *)
    a[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; n * Times @@ (1-1/p) * Total[1/(p - (Boole[# == 1] & /@ e))]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2025 *)
  • PARI
    A117494(n) = sum(k=1,n,isprime(gcd(n,k))); \\ Antti Karttunen, Feb 25 2018
    
  • PARI
    a(n) = my(f=factor(n)[, 1]); sum(k=1, #f, eulerphi(n/f[k])); \\ Daniel Suteu, Jun 23 2018
    
  • PARI
    A117494(n) = sumdiv(n,d,eulerphi(n/d)*isprime(d)); \\ Antti Karttunen, Nov 17 2021

Formula

Dirichlet g.f: P(s)*Z(s-1)/Z(s) with P(s) the prime zeta function and Z(s) the Riemann zeta function. - Pierre-Louis Giscard, Jul 16 2014
a(n) = Sum_{distinct primes p dividing n} phi(n/p), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 23 2018
From Antti Karttunen, Nov 17 2021: (Start)
a(n) = Sum_{d|n} A008683(n/d) * A069359(d).
a(n) = Sum_{d|n} A000010(n/d) * A010051(d).
a(n) = A349338(n) - A000010(n).
a(A005117(n)) = A300251(A005117(n)) for all n >= 1. (End)
a(n) = 1 iff n = 4 or n is prime (A175787). - Bernard Schott, Nov 18 2021
Sum_{k=1..n} a(k) ~ 3 * A085548 * n^2 / Pi^2. - Vaclav Kotesovec, Nov 20 2021

Extensions

More terms from Emeric Deutsch, Apr 01 2006

A322078 a(n) = n^2 * Sum_{p|n, p prime} 1/p^2.

Original entry on oeis.org

0, 1, 1, 4, 1, 13, 1, 16, 9, 29, 1, 52, 1, 53, 34, 64, 1, 117, 1, 116, 58, 125, 1, 208, 25, 173, 81, 212, 1, 361, 1, 256, 130, 293, 74, 468, 1, 365, 178, 464, 1, 673, 1, 500, 306, 533, 1, 832, 49, 725, 298, 692, 1, 1053, 146, 848, 370, 845, 1, 1444, 1, 965, 522
Offset: 1

Views

Author

Daniel Suteu, Nov 25 2018

Keywords

Comments

Generalized formula is f(n,m) = n^m * Sum_{p|n} 1/p^m, where f(n,0) = A001221(n) and f(n,1) = A069359(n).
Dirichlet convolution of A010051(n) and n^2. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(40) = 464 because the prime factors of 40 are 2 and 5, so we have 40^2 * (1/2^2 + 1/5^2) = 464.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), this sequence (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Magma
    [0] cat [n^2*&+[1/p^2:p in PrimeDivisors(n)]:n in [2..70]]; // Marius A. Burtea, Oct 10 2019
  • Maple
    a:= n-> n^2*add(1/i[1]^2, i=ifactors(n)[2]):
    seq(a(n), n=1..70);  # Alois P. Heinz, Oct 11 2019
  • Mathematica
    f[p_, e_] := 1/p^2; a[n_] := If[n==1, 0, n^2*Plus@@f@@@FactorInteger[n]]; Array[a, 60] (* Amiram Eldar, Nov 26 2018 *)
  • PARI
    a(n) = my(f=factor(n)[,1]~); sum(k=1, #f, n^2\f[k]^2);
    

Formula

Sum_{k=1..n} a(k) ~ A085541 * A000330(n).
G.f.: Sum_{k>=1} x^prime(k) * (1 + x^prime(k)) / (1 - x^prime(k))^3. - Ilya Gutkovskiy, Oct 10 2019
a(n) = 1 <=> n is prime. _Alois P. Heinz, Oct 11 2019
Dirichlet g.f.: zeta(s-2)*primezeta(s). This follows because Sum_{n>=1} a(n)/n^s = Sum_{n>=1} (n^2/n^s) Sum_{p|n} 1/p^2. Since n = p*j, rewrite the sum as Sum_{p} Sum_{j>=1} 1/(p^2*(p*j)^(s-2)) = Sum_{p} 1/p^s Sum_{j>=1} 1/j^(s-2) = zeta(s-2)*primezeta(s). The result generalizes to higher powers of p. - Michael Shamos, Mar 02 2023
a(n) = Sum_{d|n} A007434(d)*A001221(n/d). - Ridouane Oudra, Jul 13 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^2, where c = A010051.
a(p^k) = p^(2*k-2) for p prime and k>=1. (End)

A028235 If n = Product (p_j^k_j), a(n) = numerator of Sum 1/p_j (the denominator of this sum is A007947).

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 5, 1, 9, 8, 1, 1, 5, 1, 7, 10, 13, 1, 5, 1, 15, 1, 9, 1, 31, 1, 1, 14, 19, 12, 5, 1, 21, 16, 7, 1, 41, 1, 13, 8, 25, 1, 5, 1, 7, 20, 15, 1, 5, 16, 9, 22, 31, 1, 31, 1, 33, 10, 1, 18, 61, 1, 19, 26, 59, 1, 5, 1, 39, 8, 21, 18, 71, 1, 7, 1, 43, 1, 41, 22, 45, 32
Offset: 1

Views

Author

Keywords

Comments

For n=1, the empty sum = 0 = 0/1 = a(1)/A007947(1), thus a(1) should be 0. - Antti Karttunen, Mar 04 2018

Examples

			Fractions begin with 0, 1/2, 1/3, 1/2, 1/5, 5/6, 1/7, 1/2, 1/3, 7/10, 1/11, 5/6, ...
		

Crossrefs

Cf. A007947 (denominators), A003415, A069359, A085548, A379967.

Programs

  • Mathematica
    a[1] = 0; a[n_] := 1/FactorInteger[n][[All, 1]] // Total // Numerator;
    Array[a, 100] (* Jean-François Alcover, May 08 2019 *)
  • PARI
    A028235(n) = numerator(vecsum(apply(p->(1/p), factor(n)[, 1]))); \\ Antti Karttunen, Mar 04 2018

Formula

Fraction is additive with a(p^e) = 1/p.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A007947(k) = Sum_{p prime} 1/p^2 = 0.452247... (A085548). - Amiram Eldar, Sep 29 2023
a(n) = A003415(A007947(n)) = A069359(A007947(n)). - Antti Karttunen, Jan 22 2025

Extensions

More terms from Erich Friedman.
Term a(1) changed to 0 by Antti Karttunen, Mar 04 2018

A351242 a(n) = n^3 * Sum_{p|n, p prime} 1/p^3.

Original entry on oeis.org

0, 1, 1, 8, 1, 35, 1, 64, 27, 133, 1, 280, 1, 351, 152, 512, 1, 945, 1, 1064, 370, 1339, 1, 2240, 125, 2205, 729, 2808, 1, 4591, 1, 4096, 1358, 4921, 468, 7560, 1, 6867, 2224, 8512, 1, 12221, 1, 10712, 4104, 12175, 1, 17920, 343, 16625, 4940, 17640, 1, 25515, 1456, 22464
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^3. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 35; a(6) = 6^3 * Sum_{p|6, p prime} 1/p^3 = 216 * (1/2^3 + 1/3^3) = 35.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), this sequence (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Mathematica
    a[n_]:= n^3 * Sum[1/p^3,{p,Select[Divisors[n],PrimeQ]}]; Array[a,56] (* Stefano Spezia, Jul 14 2025 *)
  • PARI
    a(n) = my(f = factor(n)); sum(i = 1, #f~, (n/f[i,1])^3) \\ David A. Corneth, Jul 14 2025

Formula

a(A000040(n)) = 1.
G.f.: Sum_{k>=1} x^prime(k) * (1 + 4*x^prime(k) + x^(2*prime(k))) / (1 - x^prime(k))^4. - Ilya Gutkovskiy, Feb 05 2022
Dirichlet g.f. = zeta(s-3)*primezeta(s). This follows because Sum_{n>=1} a(n)/n^s = Sum_{n>=1} (n^3/n^s) Sum_{p|n} 1/p^3. Since n = p*j, rewrite the sum as Sum_{p} Sum_{j>=1} 1/(p^3*(p*j)^(s-3)) = Sum_{p} 1/p^s Sum_{j>=1} 1/j^(s-3) = zeta(s-3)*primezeta(s). The result generalizes to higher powers of p in a(n). - Michael Shamos, Mar 01 2023
Sum_{k=1..n} a(k) ~ A085964 * n^4/4. - Vaclav Kotesovec, Mar 03 2023
a(n) = Sum_{d|n} A059376(d)*A001221(n/d). - Ridouane Oudra, Jul 14 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^3, where c = A010051.
a(p^k) = p^(3*k-3) for p prime and k>=1. (End)

A351244 a(n) = n^4 * Sum_{p|n, p prime} 1/p^4.

Original entry on oeis.org

0, 1, 1, 16, 1, 97, 1, 256, 81, 641, 1, 1552, 1, 2417, 706, 4096, 1, 7857, 1, 10256, 2482, 14657, 1, 24832, 625, 28577, 6561, 38672, 1, 61921, 1, 65536, 14722, 83537, 3026, 125712, 1, 130337, 28642, 164096, 1, 234193, 1, 234512, 57186, 279857, 1, 397312, 2401, 400625, 83602
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^4. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 97; a(6) = 6^4 * Sum_{p|6, p prime} 1/p^4 = 1296 * (1/2^4 + 1/3^4) = 97.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), this sequence (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Mathematica
    a[n_]:= n^4 * Sum[1/p^4, {p, Select[Divisors[n], PrimeQ]}]; Array[a, 51] (* Stefano Spezia, Jul 14 2025 *)

Formula

a(A000040(n)) = 1.
G.f.: Sum_{k>=1} x^prime(k) * (1 + 11*x^prime(k) + 11*x^(2*prime(k)) + x^(3*prime(k))) / (1 - x^prime(k))^5. - Ilya Gutkovskiy, Feb 05 2022
Dirichlet g.f.: zeta(s-4)*primezeta(s). This follows because Sum_{n>=1} a(n)/n^s = Sum_{n>=1} (n^4/n^s) Sum_{p|n} 1/p^4. Since n = p*j, rewrite the sum as Sum_{p} Sum_{j>=1} 1/(p^4*(p*j)^(s-4)) = Sum_{p} 1/p^s Sum_{j>=1} 1/j^(s-4) = zeta(s-4)*primezeta(s). The result generalizes to higher powers of p. - Michael Shamos, Mar 02 2023
Sum_{k=1..n} a(k) ~ A085965 * n^5/5. - Vaclav Kotesovec, Mar 03 2023
a(n) = Sum_{d|n} A059377(d)*A001221(n/d). - Ridouane Oudra, Jul 14 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^4, where c = A010051.
a(p^k) = p^(4*k-4) for p prime and k>=1. (End)
Previous Showing 21-30 of 63 results. Next