cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A197036 Decimal expansion of the Modified Bessel Function I of order 0 at 1.

Original entry on oeis.org

1, 2, 6, 6, 0, 6, 5, 8, 7, 7, 7, 5, 2, 0, 0, 8, 3, 3, 5, 5, 9, 8, 2, 4, 4, 6, 2, 5, 2, 1, 4, 7, 1, 7, 5, 3, 7, 6, 0, 7, 6, 7, 0, 3, 1, 1, 3, 5, 4, 9, 6, 2, 2, 0, 6, 8, 0, 8, 1, 3, 5, 3, 3, 1, 2, 1, 3, 5, 7, 5, 0, 1, 6, 1, 2, 2, 7, 7, 5, 4, 7, 0, 3, 9, 4, 8, 1, 8, 3, 5, 7, 1, 4, 7, 2, 8, 0, 1, 0, 1, 8, 7, 1, 0, 3, 6, 1, 3, 4, 6, 8
Offset: 1

Views

Author

R. J. Mathar, Oct 08 2011

Keywords

Examples

			1.26606587775200833559824462521471753760767031135496...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 51, page 504.

Crossrefs

Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), this sequence (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

Formula

I_0(1) = Sum_{k>=0} 1/(4^k*k!^2) = Sum_{k>=0} 1/A002454(k).
Equals (1/Pi)*Integral_{t=0..Pi} exp(cos(t)) dt.
Equals BesselJ(0,i). - Jianing Song, Sep 18 2021
From Amiram Eldar, Jul 09 2023: (Start)
Equals exp(-1) * Sum_{k>=0} binomial(2*k,k)/(2^k*k!).
Equals e * Sum_{k>=0} (-1/2)^k * binomial(2*k,k)/k!. (End)

A099597 Array T(n,k) read by antidiagonals: expansion of exp(x+y)/(1-xy).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 9, 4, 1, 1, 5, 19, 19, 5, 1, 1, 6, 33, 82, 33, 6, 1, 1, 7, 51, 229, 229, 51, 7, 1, 1, 8, 73, 496, 1313, 496, 73, 8, 1, 1, 9, 99, 919, 4581, 4581, 919, 99, 9, 1, 1, 10, 129, 1534, 11905, 32826, 11905, 1534, 129, 10, 1, 1, 11, 163, 2377, 25733, 137431, 137431, 25733, 2377, 163, 11, 1
Offset: 0

Views

Author

Ralf Stephan, Oct 28 2004

Keywords

Comments

Rows are polynomials in n whose coefficients are in A099599.
From Peter Bala, Aug 19 2013: (Start)
The k-th superdiagonal sequence of this square array occurs as the sequence of numerators in the convergents to a certain continued fraction representation of the constant BesselI(k,2), where BesselI(k,x) is a modified Bessel function of the first kind:
Let d_k(n) = T(n,n+k) = n! * (n+k)! * Sum_{i=0..n} 1/(i!*(i+k)!) denote the sequence of entries on the k-th superdiagonal. It satisfies the first-order recurrence equation d_k(n) = n*(n+k)*d_k(n-1) + 1 with d_k(0) = 1 and also the second-order recurrence d_k(n) = (n*(n+k)+1)*d_k(n-1) - (n-1)*(n-1+k)*d_k(n-2) with initial conditions d_k(0) = 1 and d_k(1) = k+2. This latter recurrence is also satisfied by the sequence n!*(n+k)!. From this observation we obtain the finite continued fraction expansion d_k(n) = n!*(n+k)!*(1/(k! - k!/((k+2) - (k+1)/((2*k+5) - 2*(k+2)/((3*k+10) - ... - n*(n+k)/(((n+1)*(n+k+1)+1) ))))).
Taking the limit as n -> infinity produces a continued fraction representation for the modified Bessel function value BesselI(k,2) = Sum_{i=0..inf} 1/(i!*(i+k)!) = 1/(k! - k!/((k+2) -(k+1)/((2*k+5) - 2*(k+2)/((3*k+10) - ... - n*(n+k)/(((n+1)*(n+k+1)+1) - ...))))). See A070910 for the case k = 0 and A096789 for the case k = 1. (End)

Examples

			1, 1,  1,   1,    1,     1,
1, 2,  3,   4,    5,     6,
1, 3,  9,  19,   33,    51,
1, 4, 19,  82,  229,   496,
1, 5, 33, 229, 1313,  4581,
1, 6, 51, 496, 4581, 32826,
		

Crossrefs

Rows include A000012, A000027, A058331. Main diagonal is A006040. Antidiagonal sums are in A099598. Cf. A099599.
Cf. A088699. A228229 (main super and subdiagonal).

Programs

  • Maple
    #A099597
    T := proc(n,k) option remember;
    if n = 0 then 1 elif k = 0 then 1
    else n*k*thisproc(n-1,k-1) + 1
    fi
    end:
    # Diplay entries by antidiagonals
    seq(seq(T(n-k,k), k = 0..n), n = 0..10);
    # Peter Bala, Aug 19 2013
  • Mathematica
    T[, 0] = T[0, ] = 1;
    T[n_, k_] := T[n, k] = n k T[n - 1, k - 1] + 1;
    Table[T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 02 2019 *)

Formula

T(n,k) = Sum_{i=0..min(n,k)} C(n,i)*C(k,i)*i!^2. The LDU factorization of this square array is P * D * transpose(P), where P is Pascal's triangle A007318 and D = diag(0!^2, 1!^2, 2!^2, ... ). Compare with A088699. - Peter Bala, Nov 06 2007
Recurrence equation: T(n,k) = n*k*T(n-1,k-1) + 1 with boundary conditions T(n,0) = T(0,n ) = 1.
Main subdiagonal and main superdiagonal [1, 3, 19, 229, ...] is A228229. - Peter Bala, Aug 19 2013
nth row/column o.g.f.: HypergeometricPFQ[{1,1,-n},{},x/(x-1)]/(1-x) (see comment in A099599). - Natalia L. Skirrow, Jul 18 2025

A334380 Decimal expansion of Sum_{k>=0} (-1)^k/((2*k)!!)^2.

Original entry on oeis.org

7, 6, 5, 1, 9, 7, 6, 8, 6, 5, 5, 7, 9, 6, 6, 5, 5, 1, 4, 4, 9, 7, 1, 7, 5, 2, 6, 1, 0, 2, 6, 6, 3, 2, 2, 0, 9, 0, 9, 2, 7, 4, 2, 8, 9, 7, 5, 5, 3, 2, 5, 2, 4, 1, 8, 6, 1, 5, 4, 7, 5, 4, 9, 1, 1, 9, 2, 7, 8, 9, 1, 2, 2, 1, 5, 2, 7, 2, 4, 4, 0, 1, 6, 7, 1, 8, 0, 6, 0, 0, 0, 9, 8, 9, 1, 5, 6, 3, 3, 9, 7, 4, 9, 2, 9, 2, 5, 9, 8, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Comments

This constant is transcendental.

Examples

			1/(4^0*0!^2) - 1/(4^1*1!^2) + 1/(4^2*2!^2) - 1/(4^3*3!^2) + ... = 0.765197686557966551449717526...
		

Crossrefs

Bessel function values: this sequence (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

  • Mathematica
    RealDigits[BesselJ[0, 1], 10, 110] [[1]]
  • PARI
    besselj(0, 1) \\ Michel Marcus, Apr 26 2020

Formula

Equals BesselJ(0,1).
Equals BesselI(0,i), where BesselI is the modified Bessel function of order 0. - Jianing Song, Sep 18 2021

A334383 Decimal expansion of Sum_{k>=0} (-1)^k/(2^k*(k!)^2).

Original entry on oeis.org

5, 5, 9, 1, 3, 4, 1, 4, 4, 4, 1, 8, 9, 7, 9, 9, 1, 7, 4, 8, 8, 2, 6, 8, 4, 6, 7, 9, 1, 6, 8, 9, 6, 4, 0, 9, 8, 0, 6, 3, 6, 2, 5, 0, 4, 0, 3, 0, 9, 8, 3, 8, 6, 5, 7, 1, 5, 3, 1, 1, 7, 3, 4, 2, 1, 9, 7, 1, 7, 1, 2, 9, 2, 2, 8, 0, 2, 3, 1, 2, 6, 5, 1, 5, 7, 1, 0, 4, 4, 1, 9, 0, 2, 3, 4, 7, 2, 9, 4, 9, 4, 0, 8, 7, 4, 4, 9, 4, 4, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/(2^0*0!^2) - 1/(2^1*1!^2) + 1/(2^2*2!^2) - 1/(2^3*3!^2) + ... = 0.5591341444189799174882684679...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), this sequence (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

  • Mathematica
    RealDigits[BesselJ[0, Sqrt[2]], 10, 110] [[1]]
  • PARI
    besselj(0, sqrt(2)) \\ Michel Marcus, Apr 26 2020

Formula

Equals BesselJ(0,sqrt(2)).
Equals BesselI(0,sqrt(2)*i), where BesselI is the modified Bessel function of order 0. - Jianing Song, Sep 18 2021

A253909 1 together with the positive squares.

Original entry on oeis.org

1, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500
Offset: 0

Views

Author

Omar E. Pol, Feb 12 2015

Keywords

Comments

Also, right border of A246595 arranged as an irregular triangle.
a(n) are the Engel expansion of A070910. - Benedict W. J. Irwin, Dec 15 2016

Crossrefs

Cf. A028310, A070910, A246595. Essentially the same as A000290 and A174902.

Programs

Formula

a(n) = A028310(n)^2.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>=4. - David Neil McGrath, May 23 2015
G.f.: (x^3-4*x^2+2*x-1)/(x-1)^3. - David Neil McGrath, May 25 2015
E.g.f.: 1 + exp(x)*x*(1 + x). - Stefano Spezia, Jan 30 2023

Extensions

Keyword:mult added by Andrew Howroyd, Aug 06 2018

A334381 Decimal expansion of Sum_{k>=0} 1/(2^k*(k!)^2).

Original entry on oeis.org

1, 5, 6, 6, 0, 8, 2, 9, 2, 9, 7, 5, 6, 3, 5, 0, 5, 3, 7, 2, 9, 2, 3, 8, 6, 9, 1, 2, 6, 9, 2, 7, 7, 1, 7, 8, 8, 7, 1, 5, 8, 8, 2, 5, 3, 9, 8, 0, 2, 6, 9, 7, 0, 7, 5, 2, 7, 4, 3, 3, 8, 8, 2, 1, 1, 8, 2, 0, 4, 0, 2, 5, 8, 3, 8, 2, 3, 4, 9, 8, 5, 0, 9, 0, 8, 5, 8, 8, 9, 3, 8, 8, 3, 3, 8, 7, 0, 9, 9, 2, 4, 0, 9, 3, 1, 9, 7, 8, 3, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/(2^0*0!^2) + 1/(2^1*1!^2) + 1/(2^2*2!^2) + 1/(2^3*3!^2) + ... = 1.56608292975635053729238691...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), this sequence (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

  • Mathematica
    RealDigits[BesselI[0, Sqrt[2]], 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/(2^k*(k!)^2)) \\ Michel Marcus, Apr 26 2020
    
  • PARI
    besseli(0, sqrt(2)) \\ Michel Marcus, Apr 26 2020

Formula

Equals BesselI(0,sqrt(2)).
Equals BesselJ(0,sqrt(2)*i). - Jianing Song, Sep 18 2021

A130820 Decimal expansion of number whose Engel expansion is given by the sequence: 1,1,2,2,3,3,4,4,...ceiling(n/2),...

Original entry on oeis.org

2, 8, 7, 0, 2, 2, 2, 1, 5, 6, 9, 7, 3, 3, 9, 6, 3, 3, 0, 8, 1, 9, 4, 5, 8, 8, 6, 5, 8, 1, 1, 1, 9, 9, 6, 0, 1, 2, 4, 0, 3, 1, 9, 2, 6, 2, 2, 8, 0, 9, 9, 5, 7, 0, 1, 2, 0, 3, 1, 2, 7, 7, 3, 6, 2, 7, 2, 8, 5, 0, 3, 8, 0, 7, 6, 8, 0, 3, 7, 5, 2, 7, 8, 4, 5, 6, 3, 9, 2, 3, 6, 1, 5, 0, 7, 1, 4, 8, 2, 4
Offset: 1

Views

Author

Stephen Casey (hexomino(AT)gmail.com), Jul 17 2007

Keywords

Examples

			2.8702221569733963308194588658111996012403192622809957012...
		

References

  • Engel, F. "Entwicklung der Zahlen nach Stammbruechen" Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg. pp. 190-191, 1913.

Crossrefs

Programs

  • Maple
    evalf(BesselI(0, 2) + BesselI(1, 2) - 1, 100); # Peter Bala, Jul 02 2016
  • Mathematica
    First@ RealDigits@ N[Sum[1/Product[Ceiling[r/2], {r, n}], {n, 1000}], 100] (* Original program amended to generate output by Michael De Vlieger, Jul 03 2016 *)
    RealDigits[3 - HypergeometricPFQ[{1, 1}, {3, 3, 3}, 1]/8, 10, 100][[1]] (* Vaclav Kotesovec, Jul 03 2016 *)

Formula

From Peter Bala, Jul 01 2016: (Start)
Constant c = 1/1 + 1/(1*1) + 1/(1*1*2) + 1/(1*1*2*2) + 1/(1*1*2*2*3) + 1/(1*1*2*2*3*3) + ... = Sum_{n >= 1} binomial(n,floor(n/2))/n!.
Alternative series representations:
c = 3 - Sum_{n >= 2} 1/(n*(n - 1)*n!^2);
c = 1 + Sum_{n >= 1} (n + 2)/(n!*(n + 1)!);
c = 5/3 + 1/3*Sum_{n >= 2} (n + 1)*(n + 2)/n!^2;
c = A070910 + A096789 - 1.
Continued fraction: c = 3 - 1/(8 - 4/(14 - 9/(32 - ... - (n-1)^2/(n^2 + n + 2 - ...)))). See comments in A141827. (End)

A249590 E.g.f.: BesselI(0,2)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n^2) and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k^2 - x^k).

Original entry on oeis.org

1, 1, 6, 63, 1162, 31263, 1207344, 61719326, 4103067834, 341454828363, 34946904263560, 4304483416099530, 629558493157805370, 107728435291299602135, 21346960361800584031800, 4847223770735591212039818, 1250978551922243595690043914, 364052135715732457875255719691
Offset: 0

Views

Author

Paul D. Hanna, Nov 01 2014

Keywords

Comments

Here BesselI(0,2) = Sum_{n>=0} 1/n!^2 = 2.2795853023360672... (A070910).

Examples

			E.g.f.: 1 + x + 6*x^2/2!^2 + 63*x^3/3!^2 + 1162*x^4/4!^2 + 31263*x^5/5!^2 +...
such that A(x) = BesselI(0,2)*P(x) - Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n^2) = Sum_{n>=0} A249588(n)*x^n/n!^2, and
Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k^2 - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/4)*(1-x^3/9)*(1-x^4/16)*(1-x^5/25)*...);
Q(x) = 1/(1-x) + 1/((1-x)*(4-x^2)) + 1/((1-x)*(4-x^2)*(9-x^3)) + 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)) + 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)*(25-x^5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients q(n) in Q(x) = Sum_{n>=0} q(n)*x^n/n!^2 begin:
q(0) = 1.279585302336067267437204440811533...
q(1) = 1.279585302336067267437204440811533...
q(2) = 5.397926511680336337186022204057666...
q(3) = 48.69967981446729610442301759976513...
q(4) = 789.3250187996735809262470013346725...
q(5) = 19745.00072507184117617488656759887...
q(6) = 713288.6822890207712374724807435860...
q(7) = 34956701.28771539805703277298850790...
q(8) = 2239176303.370447012433955813571405...
q(9) = 181385849371.3820539848573249577420...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n^2) begin:
A249078 = [1, 1, 5, 49, 856, 22376, 842536, 42409480, 2782192064, ...];
from which we can generate this sequence like so:
a(0) = BesselI(0,2)*1 - q(0) = 1;
a(1) = BesselI(0,2)*1 - q(1) = 1;
a(2) = BesselI(0,2)*5 - q(2) = 6;
a(3) = BesselI(0,2)*49 - q(3) = 63;
a(4) = BesselI(0,2)*856 - q(4) = 1162;
a(5) = BesselI(0,2)*22376 - q(5) = 31263;
a(6) = BesselI(0,2)*842536 - q(6) = 1207344;
a(7) = BesselI(0,2)*42409480 - q(7) = 61719326;
a(8) = BesselI(0,2)*2782192064 - q(8) = 4103067834; ...
		

Crossrefs

Programs

  • PARI
    \p100 \\ set precision
    {P=Vec(serlaplace(serlaplace(prod(k=1, 31, 1/(1-x^k/k^2 +O(x^31)))))); } \\ A249588
    {Q=Vec(serlaplace(serlaplace(sum(n=1, 201, prod(k=1, n, 1./(k^2-x^k +O(x^31))))))); }
    for(n=0, 30, print1(round(besseli(0,2)*P[n+1]-Q[n+1]), ", "))

A271574 Decimal expansion of Sum_{n>=0} 1/(n!)^3.

Original entry on oeis.org

2, 1, 2, 9, 7, 0, 2, 5, 4, 8, 9, 8, 3, 3, 0, 6, 4, 1, 8, 1, 3, 4, 5, 2, 3, 6, 1, 0, 5, 9, 5, 4, 1, 3, 4, 6, 8, 3, 1, 9, 2, 2, 0, 7, 4, 7, 0, 3, 9, 1, 6, 9, 3, 0, 3, 7, 6, 2, 9, 9, 6, 8, 6, 0, 2, 9, 9, 9, 9, 6, 2, 2, 9, 2, 9, 9, 8, 7, 3, 0, 1, 7, 9, 6, 3, 8, 3, 2, 7, 8, 1, 2, 7, 1, 0, 4, 2, 2, 4, 9, 3, 5, 6, 4, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 10 2016

Keywords

Examples

			2.1297025489833064181345236105954134683192207470391693...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(1/n!^3, n=0..infinity), 120); # Vaclav Kotesovec, Apr 10 2016
  • Mathematica
    RealDigits[HypergeometricPFQ[{}, {1, 1}, 1], 10, 120][[1]]
    RealDigits[Total[1/(Range[0,200]!)^3],10,120][[1]] (* Harvey P. Dale, Mar 06 2024 *)
  • PARI
    default(realprecision, 120); sumpos(n=0, 1/n!^3)

A070913 Continued fraction expansion for BesselI(0,2).

Original entry on oeis.org

2, 3, 1, 1, 2, 1, 3, 7, 4, 3, 1, 2, 2, 1, 2, 1, 1, 2, 7, 8, 1, 1, 21, 1, 16, 2, 1, 8, 1, 1, 8, 1, 35, 1, 2, 1, 1, 4, 1, 1, 1, 3, 132, 3, 1, 10, 2, 1, 1, 1, 1, 2, 2, 6, 100, 1, 1, 26, 1, 66, 1, 2, 16, 1, 4, 52, 2, 1, 1, 1, 16, 8, 1, 3, 172, 1, 3, 1, 3, 3, 1, 13, 1, 5, 2, 1, 4, 3, 1, 3, 4, 7, 1, 1, 23, 1
Offset: 0

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Comments

The continued fraction terms satisfy the Gauss-Kuzmin distribution. - A.H.M. Smeets, Aug 21 2018

Crossrefs

Cf. A070910 (decimal expansion). - A.H.M. Smeets, Aug 21 2018

Programs

Formula

BesselI(0, 2) = sum(k=>0, 1/k!^2) = 2.27958530233...
Previous Showing 11-20 of 39 results. Next