cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A034856 a(n) = binomial(n+1, 2) + n - 1 = n*(n+3)/2 - 1.

Original entry on oeis.org

1, 4, 8, 13, 19, 26, 34, 43, 53, 64, 76, 89, 103, 118, 134, 151, 169, 188, 208, 229, 251, 274, 298, 323, 349, 376, 404, 433, 463, 494, 526, 559, 593, 628, 664, 701, 739, 778, 818, 859, 901, 944, 988, 1033, 1079, 1126, 1174, 1223, 1273, 1324, 1376, 1429, 1483
Offset: 1

Views

Author

Keywords

Comments

Number of 1's in the n X n lower Hessenberg (0,1)-matrix (i.e., the matrix having 1's on or below the superdiagonal and 0's above the superdiagonal).
If a 2-set Y and 2-set Z, having one element in common, are subsets of an n-set X then a(n-2) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007
Number of binary operations which have to be added to Moisil's algebras to obtain algebraic counterparts of n-valued Łukasiewicz logics. See the Wójcicki and Malinowski book, page 31. - Artur Jasinski, Feb 25 2010
Also (n + 1)!(-1)^(n + 1) times the determinant of the n X n matrix given by m(i,j) = i/(i+1) if i=j and otherwise 1. For example, (5+1)! * ((-1)^(5+1)) * Det[{{1/2, 1, 1, 1, 1}, {1, 2/3, 1, 1, 1}, {1, 1, 3/4, 1, 1}, {1, 1, 1, 4/5, 1}, {1, 1, 1, 1, 5/6}}] = 19 = a(5), and (6+1)! * ((-1)^(6+1)) * Det[{{1/2, 1, 1, 1, 1, 1}, {1, 2/3, 1, 1, 1, 1}, {1, 1, 3/4, 1, 1, 1}, {1, 1, 1, 4/5, 1, 1}, {1, 1, 1, 1, 5/6, 1}, {1, 1, 1, 1, 1, 6/7}}] = 26 = a(6). - John M. Campbell, May 20 2011
2*a(n-1) = n*(n+1) - 4, n>=0, with a(-1) = -2 and a(0) = -1, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 17 for b = 2*n + 1. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
a(n) is not divisible by 3, 5, 7, or 11. - Vladimir Shevelev, Feb 03 2014
With a(0) = 1 and a(1) = 2, a(n-1) is the number of distinct values of 1 +- 2 +- 3 +- ... +- n, for n > 0. - Derek Orr, Mar 11 2015
Also, numbers m such that 8*m+17 is a square. - Bruno Berselli, Sep 16 2015
Omar E. Pol's formula from Apr 23 2008 can be interpreted as the position of an element located on the third diagonal of an triangular array (read by rows) provided n > 1. - Enrique Pérez Herrero, Aug 29 2016
a(n) is the sum of the numerator and denominator of the fraction that is the sum of 2/(n-1) + 2/n; all fractions are reduced and n > 2. - J. M. Bergot, Jun 14 2017
a(n) is also the number of maximal irredundant sets in the (n+2)-path complement graph for n > 1. - Eric W. Weisstein, Apr 12 2018
From Klaus Purath, Dec 07 2020: (Start)
a(n) is not divisible by primes listed in A038890. The prime factors are given in A038889 and the prime terms of the sequence are listed in A124199.
Each odd prime factor p divides exactly 2 out of any p consecutive terms with the exception of 17, which appears only once in such an interval of terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -3 (mod p), see examples.
If A is a sequence satisfying the recurrence t(n) = 5*t(n-1) - 2*t(n-2) with the initial values either A(0) = 1, A(1) = n + 4 or A(0) = -1, A(1) = n-1, then a(n) = (A(i)^2 - A(i-1)*A(i+1))/2^i for i>0. (End)
Mark each point on a 4^n grid with the number of points that are visible from the point; for n > 1, a(n) is the number of distinct values in the grid. - Torlach Rush, Mar 23 2021
The sequence gives the number of "ON" cells in the cellular automaton on a quadrant of a square grid after the n-th stage, where the "ON" cells lie only on the external perimeter and the perimeter of inscribed squares having the cell (1,1) as a unique common vertex. See Spezia link. - Stefano Spezia, May 28 2025

Examples

			From _Bruno Berselli_, Mar 09 2015: (Start)
By the definition (first formula):
----------------------------------------------------------------------
  1       4         8           13            19              26
----------------------------------------------------------------------
                                                              X
                                              X              X X
                                X            X X            X X X
                    X          X X          X X X          X X X X
          X        X X        X X X        X X X X        X X X X X
  X      X X      X X X      X X X X      X X X X X      X X X X X X
          X        X X        X X X        X X X X        X X X X X
----------------------------------------------------------------------
(End)
From _Klaus Purath_, Dec 07 2020: (Start)
Assuming a(i) is divisible by p with 0 < i < p and a(k) is the next term divisible by p, then from i + k == -3 (mod p) follows that k = min(p*m - i - 3) != i for any integer m.
(1) 17|a(7) => k = min(17*m - 10) != 7 => m = 2, k = 24 == 7 (mod 17). Thus every a(17*m + 7) is divisible by 17.
(2) a(9) = 53 => k = min(53*m - 12) != 9 => m = 1, k = 41. Thus every a(53*m + 9) and a(53*m + 41) is divisible by 53.
(3) 101|a(273) => 229 == 71 (mod 101) => k = min(101*m - 74) != 71 => m = 1, k = 27. Thus every a(101*m + 27) and a(101*m + 71) is divisible by 101. (End)
From _Omar E. Pol_, Aug 08 2021: (Start)
Illustration of initial terms:                             _ _
.                                           _ _           |_|_|_
.                              _ _         |_|_|_         |_|_|_|_
.                   _ _       |_|_|_       |_|_|_|_       |_|_|_|_|_
.          _ _     |_|_|_     |_|_|_|_     |_|_|_|_|_     |_|_|_|_|_|_
.   _     |_|_|    |_|_|_|    |_|_|_|_|    |_|_|_|_|_|    |_|_|_|_|_|_|
.  |_|    |_|_|    |_|_|_|    |_|_|_|_|    |_|_|_|_|_|    |_|_|_|_|_|_|
.
.   1       4         8          13            19              26
------------------------------------------------------------------------ (End)
		

References

  • A. S. Karpenko, Łukasiewicz's Logics and Prime Numbers, 2006 (English translation).
  • G. C. Moisil, Essais sur les logiques non-chrysippiennes, Ed. Academiei, Bucharest, 1972.
  • Wójcicki and Malinowski, eds., Łukasiewicz Sentential Calculi, Wrocław: Ossolineum, 1977.

Crossrefs

Subsequence of A165157.
Triangular numbers (A000217) minus two.
Third diagonal of triangle in A059317.

Programs

  • Haskell
    a034856 = subtract 1 . a000096 -- Reinhard Zumkeller, Feb 20 2015
    
  • Magma
    [Binomial(n + 1, 2) + n - 1: n in [1..60]]; // Vincenzo Librandi, May 21 2011
    
  • Maple
    a := n -> hypergeom([-2, n-1], [1], -1);
    seq(simplify(a(n)), n=1..53); # Peter Luschny, Aug 02 2014
  • Mathematica
    f[n_] := n (n + 3)/2 - 1; Array[f, 55] (* or *) k = 2; NestList[(k++; # + k) &, 1, 55] (* Robert G. Wilson v, Jun 11 2010 *)
    Table[Binomial[n + 1, 2] + n - 1, {n, 53}] (* or *)
    Rest@ CoefficientList[Series[x (1 + x - x^2)/(1 - x)^3, {x, 0, 53}], x] (* Michael De Vlieger, Aug 29 2016 *)
  • Maxima
    A034856(n) := block(
            n-1+(n+1)*n/2
    )$ /* R. J. Mathar, Mar 19 2012 */
    
  • PARI
    A034856(n)=(n+3)*n\2-1 \\ M. F. Hasler, Jan 21 2015
    
  • Python
    def A034856(n): return n*(n+3)//2 -1 # G. C. Greubel, Jun 15 2025

Formula

G.f.: A(x) = x*(1 + x - x^2)/(1 - x)^3.
a(n) = A049600(3, n-2).
a(n) = binomial(n+2, 2) - 2. - Paul Barry, Feb 27 2003
With offset 5, this is binomial(n, 0) - 2*binomial(n, 1) + binomial(n, 2), the binomial transform of (1, -2, 1, 0, 0, 0, ...). - Paul Barry, Jul 01 2003
Row sums of triangle A131818. - Gary W. Adamson, Jul 27 2007
Binomial transform of (1, 3, 1, 0, 0, 0, ...). Also equals A130296 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
Row sums of triangle A134225. - Gary W. Adamson, Oct 14 2007
a(n) = A000217(n+1) - 2. - Omar E. Pol, Apr 23 2008
From Jaroslav Krizek, Sep 05 2009: (Start)
a(n) = a(n-1) + n + 1 for n >= 1.
a(n) = n*(n-1)/2 + 2*n - 1.
a(n) = A000217(n-1) + A005408(n-1) = A005843(n-1) + A000124(n-1). (End)
a(n) = Hyper2F1([-2, n-1], [1], -1). - Peter Luschny, Aug 02 2014
a(n) = floor[1/(-1 + Sum_{m >= n+1} 1/S2(m,n+1))], where S2 is A008277. - Richard R. Forberg, Jan 17 2015
a(n) = A101881(2*(n-1)). - Reinhard Zumkeller, Feb 20 2015
a(n) = A253909(n+3) - A000217(n+3). - David Neil McGrath, May 23 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. - David Neil McGrath, May 23 2015
For n > 1, a(n) = 4*binomial(n-1,1) + binomial(n-2,2), comprising the third column of A267633. - Tom Copeland, Jan 25 2016
From Klaus Purath, Dec 07 2020: (Start)
a(n) = A024206(n) + A024206(n+1).
a(2*n-1) = -A168244(n+1).
a(2*n) = A091823(n). (End)
Sum_{n>=1} 1/a(n) = 3/2 + 2*Pi*tan(sqrt(17)*Pi/2)/sqrt(17). - Amiram Eldar, Jan 06 2021
a(n) + a(n+1) = A028347(n+2). - R. J. Mathar, Mar 13 2021
a(n) = A000290(n) - A161680(n-1). - Omar E. Pol, Mar 26 2021
E.g.f.: 1 + exp(x)*(x^2 + 4*x - 2)/2. - Stefano Spezia, Jun 05 2021
a(n) = A024916(n) - A244049(n). - Omar E. Pol, Aug 01 2021
a(n) = A000290(n) - A000217(n-2). - Omar E. Pol, Aug 05 2021

Extensions

More terms from Zerinvary Lajos, May 12 2006

A246595 Run Length Transform of squares.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 4, 9, 1, 1, 1, 4, 4, 4, 9, 16, 1, 1, 1, 4, 1, 1, 4, 9, 4, 4, 4, 16, 9, 9, 16, 25, 1, 1, 1, 4, 1, 1, 4, 9, 1, 1, 1, 4, 4, 4, 9, 16, 4, 4, 4, 16, 4, 4, 16, 36, 9, 9, 9, 36, 16, 16, 25, 36, 1, 1, 1, 4, 1, 1, 4, 9, 1, 1, 1, 4, 4, 4, 9, 16, 1, 1, 1, 4, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2014

Keywords

Comments

The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g., 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).

Examples

			From _Omar E. Pol_, Feb 10 2015: (Start)
Written as an irregular triangle in which row lengths is A011782:
1;
1;
1,4;
1,1,4,9;
1,1,1,4,4,4,9,16;
1,1,1,4,1,1,4,9,4,4,4,16,9,9,16,25;
1,1,1,4,1,1,4,9,1,1,1,4,4,4,9,16,4,4,4,16,4,4,16,36,9,9,9,36,16,16,25,36;
...
Right border gives A253909: 1 together with the positive squares.
(End)
From _Omar E. Pol_, Mar 19 2015: (Start)
Also, the sequence can be written as an irregular tetrahedron T(s,r,k) as shown below:
1;
..
1;
..
1;
4;
.......
1,   1;
4;
9;
...............
1,   1,  1,  4;
4,   4;
9;
16;
.............................
1,   1,  1,  4, 1, 1,  4,  9;
4,   4,  4, 16;
9,   9;
16;
25;
......................................................
1,   1,  1,  4, 1, 1,  4,  9, 1, 1, 1, 4, 4, 4, 9, 16;
4,   4,  4, 16, 4, 4, 16, 36;
9,   9,  9, 36;
16, 16;
25;
36;
...
Apart from the initial 1, we have that T(s,r,k) = T(s+1,r,k).
(End)
		

Crossrefs

Cf. A003714 (gives the positions of ones).
Run Length Transforms of other sequences: A071053, A227349, A246588, A246596, A246660, A246661, A246674.

Programs

  • Maple
    ans:=[];
    for n from 0 to 100 do lis:=[]; t1:=convert(n, base, 2); L1:=nops(t1); out1:=1; c:=0;
    for i from 1 to L1 do
       if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
       elif out1 = 0 and t1[i] = 1 then c:=c+1;
       elif out1 = 1 and t1[i] = 0 then c:=c;
       elif out1 = 0 and t1[i] = 0 then lis:=[c, op(lis)]; out1:=1; c:=0;
       fi;
       if i = L1 and c>0 then lis:=[c, op(lis)]; fi;
                       od:
    a:=mul(i^2, i in lis);
    ans:=[op(ans), a];
    od:
    ans;
  • Mathematica
    Table[Times @@ (Length[#]^2&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 85}] (* Jean-François Alcover, Jul 11 2017 *)
  • Python
    from operator import mul
    from functools import reduce
    from re import split
    def A246595(n):
        return reduce(mul,(len(d)**2 for d in split('0+',bin(n)[2:]) if d != '')) if n > 0 else 1 # Chai Wah Wu, Sep 07 2014
    
  • Sage
    # uses[RLT from A246660]
    A246595_list = lambda len: RLT(lambda n: n^2, len)
    A246595_list(86) # Peter Luschny, Sep 07 2014
    
  • Scheme
    ; using MIT/GNU Scheme
    (define (A246595 n) (fold-left (lambda (a r) (* a r r)) 1 (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2)))))
    ;; Other functions are as in A227349 - Antti Karttunen, Sep 08 2014

Formula

a(n) = A227349(n)^2. - Omar E. Pol, Feb 10 2015

A255047 1 together with the positive terms of A000225.

Original entry on oeis.org

1, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295
Offset: 0

Views

Author

Omar E. Pol, Feb 15 2015

Keywords

Comments

Also, right border of A246674 arranged as an irregular triangle.
Essentially the same as A168604, A126646 and A000225.
Total number of lambda-parking functions induced by all partitions of n. a(0)=1: [], a(1)=1: [1], a(2)=3: [1], [2], [1,1], a(4)=7: [1], [2], [3], [1,1], [1,2], [2,1], [1,1,1]. - Alois P. Heinz, Dec 04 2015
Also, the decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 645", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 19 2017
Also number of multiset partitions of {1,1} U [n] into exactly 2 nonempty parts. a(2) = 3: 111|2, 11|12, 1|112. - Alois P. Heinz, Aug 18 2017
Also, the number of unlabeled connected P-series (equivalently, connected P-graphs) with n+1 elements. - Salah Uddin Mohammad, Nov 19 2021

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Row n=1 of A263159.
Column k=2 of A291117.
Cf. A078485.

Programs

  • Magma
    [1] cat [2^n -1: n in [1..40]]; // G. C. Greubel, Feb 07 2021
    
  • Mathematica
    CoefficientList[Series[(1 -2*x +2*x^2)/((1-x)*(1-2*x)), {x, 0, 33}], x] (* or *) LinearRecurrence[{3, -2}, {1,1,3}, 40] (* Vincenzo Librandi, Jul 20 2017 *)
    Table[2^n -1 +Boole[n==0], {n, 0, 40}] (* G. C. Greubel, Feb 07 2021 *)
  • Python
    def A255047(n): return -1^(-1<Chai Wah Wu, Dec 21 2022
  • Sage
    [1]+[2^n -1 for n in (1..40)] # G. C. Greubel, Feb 07 2021
    

Formula

From Alois P. Heinz, Feb 19 2015: (Start)
O.g.f.: (1 -2*x +2*x^2)/((1-x)*(1-2*x)).
E.g.f.: exp(2*x) - exp(x) + 1. (End)
a(n) = A078485(n+1) for n > 2. - Georg Fischer, Oct 22 2018

A147559 Result of using the perfect squares as coefficients in an infinite polynomial series in x and then expressing this series as (1+a(1)x)(1+a(2)x^2)(1+a(3)x^3)...

Original entry on oeis.org

1, 4, 5, 11, -6, -22, -4, 155, 16, -182, -158, 376, 56, -1456, 680, 23155, -4966, -28674, 6132, 117946, 15792, -415426, -162814, 512550, 333904, -4231332, 235968, 15171332, -5259270, -68578566, 15199212, 736983115, -4403208, -1097465342
Offset: 1

Views

Author

Neil Fernandez, Nov 07 2008

Keywords

Examples

			From the perfect squares, construct the series 1+x+4x^2+9x^3+16x^4+25x^5+... a(1) is always the coefficient of x, here 1. Divide by (1+a(1)x), i.e. here (1+x), to get the quotient (1+a(2)x^2+...), which here gives a(2)=4. Then divide this quotient by (1+a(2)x^2), i.e. here (1+4x^2), to get (1+a(3)x^3+...), giving a(3)=5.
		

Crossrefs

Programs

  • Mathematica
    terms = 34; sol = {a[1] -> 1}; Do[sol = Append[sol, Solve[ SeriesCoefficient[ x*(1+x)/(1-x)^3 - (Product[1+a[k]*x^k, {k, 1, n}] /. sol), {x, 0, n}] == 0][[1, 1]]], {n, 2, terms}];
    Array[a, terms] /. sol (* Jean-François Alcover, Jun 20 2017 *)

Formula

Product_{k>=1} (1+a(k)*x^k) = 1 + Sum_{k>=1} k^2*x^k. - Seiichi Manyama, Jun 24 2018

Extensions

Terms from a(11) on corrected by R. J. Mathar, Nov 11 2008

A316087 Expansion of 1/(1 + Sum_{k>=1} k^2 * x^k).

Original entry on oeis.org

1, -1, -3, -2, 7, 19, 8, -53, -119, -18, 387, 727, -112, -2745, -4315, 2238, 18991, 24715, -24296, -128461, -135023, 219502, 850635, 688239, -1806560, -5515441, -3116403, 14022398, 34994967, 10783939, -104389592, -216919973, -5497639, 752295022, 1309660627
Offset: 0

Views

Author

Seiichi Manyama, Jun 24 2018

Keywords

Crossrefs

1/(1+ Sum_{k>=1} k^m * x^k): A163810 (m=1), this sequence (m=2), A316088 (m=3).

Programs

  • PARI
    N=99; x='x+O('x^N); Vec(1/(1+sum(k=1, sqrtint(N), k^2*x^k)))

Formula

Convolution inverse of A253909.
G.f.: (x-1)^3/(x^3-4*x^2+2*x-1).
a(0) = 1; a(n) = -Sum_{k=1..n} k^2 * a(n-k). - Ilya Gutkovskiy, Feb 02 2021

A316152 Inverse Euler transform of n^2.

Original entry on oeis.org

1, 3, 5, 1, -6, -17, -4, 29, 56, 7, -158, -255, 56, 878, 1234, -725, -4966, -5852, 6132, 28410, 26932, -46529, -162814, -117479, 332350, 929292, 454328, -2279218, -5259270, -1252181, 15199212, 29375985, -1279006, -99212897, -161079712, 60433632, 635914664, 860993882
Offset: 1

Views

Author

Seiichi Manyama, Jun 25 2018

Keywords

Examples

			(1-x)^(-1)*(1-x^2)^(-3)*(1-x^3)^(-5)*(1-x^4)^(-1)*(1-x^5)^6* ... = 1 + x + 4*x^2 + 9*x^3 + 16*x^4 + 25*x^5 + ... .
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; n^2-b(n, n-1) end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 29 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i] + j - 1, j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    a[n_] := n^2 - b[n, n - 1];
    a /@ Range[40] (* Jean-François Alcover, Jan 06 2020, after Alois P. Heinz *)

Formula

Product_{k>=1} (1-x^k)^(-a(k)) = 1 + Sum_{k>=1} A000290(k)*x^k.
G.f.: Sum_{k>=1} mu(k)*log(1 + x^k*(1 + x^k)/(1 - x^k)^3)/k. - Ilya Gutkovskiy, May 18 2019

A316086 Product_{k>=1} 1/(1 - a(k)*x^k) = 1 + Sum_{k>=1} k^2*x^k.

Original entry on oeis.org

1, 3, 5, -2, -6, -35, -4, 8, 16, -62, -158, -1149, 56, 556, 680, -1566, -4966, 3544, 6132, 20268, 15792, -75194, -162814, -1246153, 333904, 805112, 235968, -2775034, -5259270, 7160120, 15199212, 25457976, -4403208, -119142438, -161039518, 211525304, 635914664
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2018

Keywords

Examples

			1/((1-x)*(1-3*x^2)*(1-5*x^3)*(1+2*x^4)* ... ) = 1 + x + 4*x^2 + 9*x^3 + 16*x^4 + ... .
		

Crossrefs

A316150 Inverse Weigh transform of n^2.

Original entry on oeis.org

1, 4, 5, 5, -6, -12, -4, 34, 56, 1, -158, -267, 56, 874, 1234, -691, -4966, -5796, 6132, 28411, 26932, -46687, -162814, -117746, 332350, 929348, 454328, -2278344, -5259270, -1250947, 15199212, 29375294, -1279006, -99217863, -161079712, 60427836, 635914664
Offset: 1

Views

Author

Seiichi Manyama, Jun 25 2018

Keywords

Examples

			(1+x)*(1+x^2)^4*(1+x^3)^5*(1+x^4)^5*(1+x^5)^(-6)* ... = 1 + x + 4*x^2 + 9*x^3 + 16*x^4 + 25*x^5 + ... .
		

Crossrefs

Formula

Product_{k>=1} (1+x^k)^a(k) = 1 + Sum_{k>=1} A000290(k)*x^k.
Showing 1-8 of 8 results.