cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A016129 Expansion of 1/((1-2*x)*(1-6*x)).

Original entry on oeis.org

1, 8, 52, 320, 1936, 11648, 69952, 419840, 2519296, 15116288, 90698752, 544194560, 3265171456, 19591036928, 117546237952, 705277460480, 4231664828416, 25389989101568, 152339934871552, 914039609753600, 5484237659570176, 32905425959518208, 197432555761303552
Offset: 0

Views

Author

Keywords

Crossrefs

Row sums of A100851.
Sequences with gf 1/((1-n*x)*(1-6*x)): A000400 (n=0), A003464 (n=1), this sequence (n=2), A016137 (n=3), A016149 (n=4), A005062 (n=5), A053469 (n=6), A016169 (n=7), A016170 (n=8), A016172 (n=9), A016173 (n=10), A016174 (n=11), A016175 (n=12).

Programs

Formula

a(n) = A071951(n+2, 2) = 9*(2*3)^(n-1) - (2*1)^(n-1) = (2^(n-1))*(3^(n+1)-1), n>=0. - Wolfdieter Lang, Nov 07 2003
From Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 05 2005: (Start)
G.f.: 1/((1-2*x)*(1-6*x)).
E.g.f.: (-exp(2*x) + 3*exp(6*x))/2.
a(n) = (6^(n+1) - 2^(n+1))/4. (End)
a(n)^2 = A144843(n+1). - Philippe Deléham, Nov 26 2008
a(n) = 8*a(n-1) - 12*a(n-2). - Philippe Deléham, Jan 01 2009
a(n) = det(|ps(i+2,j+1)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013

A078739 Triangle of generalized Stirling numbers S_{2,2}(n,k) read by rows (n>=1, 2<=k<=2n).

Original entry on oeis.org

1, 2, 4, 1, 4, 32, 38, 12, 1, 8, 208, 652, 576, 188, 24, 1, 16, 1280, 9080, 16944, 12052, 3840, 580, 40, 1, 32, 7744, 116656, 412800, 540080, 322848, 98292, 16000, 1390, 60, 1, 64, 46592, 1446368, 9196992, 20447056, 20453376, 10564304, 3047520, 511392, 50400
Offset: 1

Views

Author

N. J. A. Sloane, Dec 21 2002

Keywords

Comments

A generalization of the Stirling2 numbers S_{1,1} from A008277.
The g.f. for column k=2*K is (x^K)*pe(K,x)*d(k,x) and for k=2*K+1 it is (x^K)*po(K,x)*2*(K+1)*K*d(k,x), K>= 1, with d(k,x) := 1/product(1-p*(p-1)*x,p=2..k) and the row polynomials pe(n,x) := sum(A089275(n,m)*x^m,m=0..n-1) and po(n,x) := sum(A089276(n,m)*x^m,m=0..n-1). - Wolfdieter Lang, Nov 07 2003
The formula for the k-th column sequence is given in A089511.
Codara et al., show that T(n,k) gives the number of k-colorings of the graph nK_2 (the disjoint union of n copies of the complete graph K_2). An example is given below. - Peter Bala, Aug 15 2013

Examples

			From _Peter Bala_, Aug 15 2013: (Start)
The table begins
n\k | 2    3    4    5    6   7   8
= = = = = = = = = = = = = = = = = =
  1 | 1
  2 | 2    4    1
  3 | 4   32   38   12    1
  4 | 8  208  652  576  188  24   1
...
Graph coloring interpretation of T(2,3) = 4: The graph 2K_2 is 2 copies of K_2, the complete graph on 2 vertices:
o---o  o---o
a   b  c   d
The four 3-colorings of 2K_2 are ac|b|d, ad|b|c, bc|a|d and bd|a|c. (End)
		

Crossrefs

Row sums give A020556. Triangle S_{1, 1} = A008277, S_{2, 1} = A008297 (ignoring signs), S_{3, 1} = A035342, S_{3, 2} = A078740, S_{3, 3} = A078741. A090214 (S_{4,4}).
The column sequences are A000079(n-1)(powers of 2), 4*A016129(n-2), A089271, 12*A089272, A089273, etc.
Main diagonal is A217900.
Cf. A071951 (Legendre-Stirling triangle).

Programs

  • Maple
    # Note that the function implements the full triangle because it can be
    # much better reused and referenced in this form.
    A078739 := proc(n,k) local r;
    add((-1)^(n-r)*binomial(n,r)*combinat[stirling2](n+r,k),r=0..n) end:
    # Displays the truncated triangle from the definition:
    seq(print(seq(A078739(n,k),k=2..2*n)),n=1..6); # Peter Luschny, Mar 25 2011
  • Mathematica
    t[n_, k_] := Sum[(-1)^(n-r)*Binomial[n, r]*StirlingS2[n+r, k], {r, 0, n}]; Table[t[n, k], {n, 1, 7}, {k, 2, 2*n}] // Flatten (* Jean-François Alcover, Apr 11 2013, after Peter Luschny *)

Formula

a(n, k) = sum(binomial(k-2+p, p)*A008279(2, p)*a(n-1, k-2+p), p=0..2) if 2 <= k <= 2*n for n>=1, a(1, 2)=1; else 0. Here A008279(2, p) gives the third row (k=2) of the augmented falling factorial triangle: [1, 2, 2] for p=0, 1, 2. From eq.(21) with r=2 of the Blasiak et al. paper.
a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*A008279(p, 2)^n, p=2..k) for 2 <= k <= 2*n, n>=1. From eq.(19) with r=2 of the Blasiak et al. paper.
a(n, k) = sum(A071951(n, j)*A089503(j, 2*j-k+1), j=ceiling(k/2)..min(n, k-1)), 1<=n, 2<=k<=2n; relation to Legendre-Stirling triangle. Wolfdieter Lang, Dec 01 2003
a(n, k) = A122193(n,k)*2^n/k! - Peter Luschny, Mar 25 2011
E^n = sum_{k=2}^(2n) a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator x^2d^2/dx^2.
The row polynomials R(n,x) are given by the Dobinski-type formula R(n,x) = exp(-x)*sum {k = 0..inf} (k*(k-1))^n*x^k/k!. - Peter Bala, Aug 15 2013

Extensions

More terms from Wolfdieter Lang, Nov 07 2003

A016309 Expansion of 1/((1-2*x)*(1-6*x)*(1-12*x)).

Original entry on oeis.org

1, 20, 292, 3824, 47824, 585536, 7096384, 85576448, 1029436672, 12368356352, 148510974976, 1782675894272, 21395375902720, 256764101869568, 3081286768672768, 36976146501533696, 443717989683232768
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(24*12^n-15*6^n+2^n)/10: n in [0..20]]; // Vincenzo Librandi, Sep 02 2011
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-6x)(1-12x)),{x,0,30}],x] (* or *) LinearRecurrence[{20,-108,144},{1,20,292},30] (* Harvey P. Dale, Jul 26 2019 *)

Formula

a(n) = A071951(n+3, 3) = (24*12^n - 15*6^n + 2^n)/10. - Wolfdieter Lang, Nov 07 2003
a(n) = 18*a(n-1) - 72*a(n-2) + 2^n; a(n) = 20*a(n-1) - 108*a(n-2) + 144*a(n-3) for n > 2. - Vincenzo Librandi, Sep 02 2011
a(n) = det(|ps(i+3,j+2)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013

A084915 a(n) = (n!)^2*n.

Original entry on oeis.org

0, 1, 8, 108, 2304, 72000, 3110400, 177811200, 13005619200, 1185137049600, 131681894400000, 17526860144640000, 2753310393630720000, 504085244567224320000
Offset: 0

Views

Author

Jon Perry, Jul 14 2003

Keywords

Comments

Used to prove that Sum_{n>=1} 1/A002378(n) = 1. Examining Sum_{n=1..k} 1/A002378(n) gives 1/2, 1/2 + 1/6, 1/2 + 1/6 + 1/12. Simplifying gives 1/2, 8/12, 108/144, where the numerators are this sequence and the denominators are A010790. Therefore we have k!^2*k/k!(k+1)! = k*k!/(k+1)! = k/(k+1), which tends to 1 as k tends to infinity.

Examples

			a(3) = 3!^2*3 = 36*3 = 108.
		

Crossrefs

Programs

  • PARI
    for(n=1,50,print1(n!^2*n","))

Formula

a(n) = n!*(n+1)! - n!^2.
a(n) = det(PS(i+2,j+1), 1 <= i,j <= n-1), where PS(n,k) are Legendre-Stirling numbers of the second kind (A071951) and n > 0. [Mircea Merca, Apr 06 2013]

A089271 Third column (k=4) of array A078739(n,k) ((2,2)-generalized Stirling2).

Original entry on oeis.org

1, 38, 652, 9080, 116656, 1446368, 17636032, 213311360, 2569812736, 30898216448, 371141389312, 4455873443840, 53483541999616, 641880868118528, 7703040602324992, 92439308337643520, 1109288626710839296
Offset: 0

Views

Author

Wolfdieter Lang, Nov 07 2003

Keywords

Comments

The numerator of the g.f. is the n=2 row polynomial of the triangle A089275.

Crossrefs

Cf. A089272, A071951 (Legendre-Stirling triangle).

Programs

  • Magma
    [6*12^n-6*6^n+2^n: n in [0..20]]; // Vincenzo Librandi, Sep 02 2011
    
  • Mathematica
    Table[6*12^n -6*6^n +2^n, {n,0,30}] (* G. C. Greubel, Feb 07 2018 *)
    LinearRecurrence[{20,-108,144},{1,38,652},20] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    for(n=0,30, print1(6*12^n -6*6^n +2^n, ", ")) \\ G. C. Greubel, Feb 07 2018

Formula

G.f.: (1+18*x)/((1-2*1*x)*(1-3*2*x)*(1-4*3*x)).
a(n) = 6*12^n - 6*6^n + 2^n = d(n) + 18*d(n-1), n>=1, a(0)=1, with d(n) := A016309(n) = A071951(n+3, 3) = (24*12^n-15*6^n+2^n)/10.

A089272 Fourth column (k=5) of array A078739(n,k) ((2,2)- generalized Stirling2) divided by 12.

Original entry on oeis.org

1, 48, 1412, 34400, 766416, 16296448, 337709632, 6896540160, 139644851456, 2813500878848, 56517475402752, 1133320271749120, 22702062218039296, 454469171469877248, 9094518828981174272, 181952003020274401280
Offset: 0

Views

Author

Wolfdieter Lang, Nov 07 2003

Keywords

Comments

The numerator of the g.f. is the n=2 row polynomial of the triangle A089276.

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003), 198-205.

Crossrefs

Cf. A071952, A089271, A089273, A071951 (Legendre-Stirling triangle).

Programs

Formula

G.f. (1+8*x)/((1-2*1*x)*(1-3*2*x)*(1-4*3*x)*(1-5*4*x)).
a(n)= (3500*20^n - 3780*12^n + 945*6^n - 35*2^n)/630 = d(n) + 8*d(n-1), with d(n) := A071952(n+4)= (2500*20^n - 2268*12^n + 405*6^n - 7*2^n)/630, n>=1.

A130033 Fourth (m=3) column sequence of triangle A129467.

Original entry on oeis.org

1, -20, 508, -17544, 808848, -48405888, 3663035136, -342678781440, 38879803008000, -5263815891456000, 838682139211776000, -155393459730173952000, 33136711787903754240000, -8059211591488628981760000, 2217755736675770074398720000
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Comments

See the M. Bruschi et al. reference given in A129467.

Examples

			a(3)=-det([20,1,0],[292,40,1],[3824,1092,70])=-17544. [_Mircea Merca_, Apr 06 2013]
		

Crossrefs

Cf. A010790 (m=1 column unsigned), A084915 (m=2 column unsigned).
Cf. A129467.

Programs

  • Magma
    h:= func< n,k | (&+[1/j^k : j in [1..n]]) >;
    A130033:= func< n | (-1)^n*(Factorial(n+2))^2*(2*(n+2) - (n+3)*h(n+2,2)) >;
    [A130033(n): n in [0..30]]; // G. C. Greubel, Feb 10 2024
    
  • Mathematica
    A130033[n_]:= (-1)^n*((n+2)!)^2*(2*(n+2) -(n+3)*HarmonicNumber[n+2,2]);
    Table[A130033[n], {n,0,30}] (* G. C. Greubel, Feb 10 2024 *)
  • SageMath
    def A130033(n): return (-1)^n*(factorial(n+2))^2*(2*(n+2) - (n+3)*(zeta(2) - psi(1,n+3)))
    [A130033(n) for n in range(31)] # G. C. Greubel, Feb 10 2024

Formula

a(n) = A129467(n+3,3),n>=0.
a(n) = (-1)^n*det(PS(i+3,j+2), 1 <= i,j <= n), where PS(n,k) are Legendre-Stirling numbers of the second kind (A071951). - Mircea Merca, Apr 06 2013
a(n) = (-1)^n * ((n+2)!)^2 * (2*(n+2) - (n+3)*h(n+2, 2)), where h(n,k) = Sum_{j=1..n} 1/j^k is the generalized harmonic number. - G. C. Greubel, Feb 10 2024

A135921 O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*(k+1)*x).

Original entry on oeis.org

1, 1, 3, 13, 81, 669, 6955, 88505, 1346209, 23998521, 493956467, 11596542533, 307301505073, 9110471500693, 299893197116059, 10888674034993905, 433549376981078593, 18833037527449398129, 888439543634687700579
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2007

Keywords

Examples

			O.g.f.: A(x) = 1 + x/(1-2x) + x^2/((1-2x)*(1-6x)) + x^3/((1-2x)*(1-6x)*(1-12x)) + x^4/((1-2x)*(1-6x)*(1-12x)*(1-20x)) + ...
Also generated by iterated binomial transforms in the following way:
[1,3,13,81,669,6955,88505,...] = BINOMIAL^2([1,1,5,31,253,2673,34833,..]);
[1,5,31,253,2673,34833,541879,...] = BINOMIAL^4([1,1,7,57,577,7389,...]);
[1,7,57,577,7389,115983,2151493,...] = BINOMIAL^6([1,1,9,91,1101,16497,...]);
[1,9,91,1101,16497,301669,..] = BINOMIAL^8([1,1,11,133,1873,32061,..]);
[1,11,133,1873,32061,666579,...] = BINOMIAL^10([1,1,13,183,2941,56529,...]);
etc.
		

Crossrefs

Programs

  • PARI
    a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-j*(j+1)*x+x*O(x^n))), n)
    
  • PARI
    {a(n) = sum( k=0, n, sum( i=0, k, (-1)^(i+k) * (2*i + 1) * (i*i + i)^n / (k-i)! / (k+i+1)! ))} /* Michael Somos, Feb 25 2012 */

Formula

a(n+1) = row sums of A071951. - Michael Somos, Feb 25 2012
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-(k+1)*(k+2)*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013

A089273 Fifth column (k=6) of array A078739(n,k) ((2,2)-generalized Stirling2).

Original entry on oeis.org

1, 188, 12052, 540080, 20447056, 706827968, 23178048832, 736079932160, 22912552596736, 704164858293248, 21462936995648512, 650674662791229440, 19656291799888777216, 592413643343696150528, 17826953303927872110592
Offset: 0

Views

Author

Wolfdieter Lang, Nov 07 2003

Keywords

Comments

The numerator of the g.f. is the m=3 row polynomial of the triangle A089275.

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003), 198-205.

Crossrefs

Cf. A089272, A071951 (Legendre-Stirling triangle).

Programs

  • Maple
    a:= n-> (Matrix([[12052,188,1,0,0]]). Matrix(5, (i,j)-> if (i=j-1) then 1 elif j=1 then [70,-1708,17544, -72000,86400][i] else 0 fi)^n)[1,3]: seq(a(n), n=0..30);  # Alois P. Heinz, Aug 14 2008
  • Mathematica
    LinearRecurrence[{70, -1708, 17544, -72000, 86400}, {1, 188, 12052, 540080, 20447056}, 15] (* Jean-François Alcover, Feb 28 2020 *)

Formula

G.f.: (1+118*x+ 600*x^2)/Product_{p=1..5} (1-(p+1)*p*x).
a(n) = (2^n - 36*6^n + 36*6*12^n - 400*20^n + 75*3*30^n)/6 = d(n) + 118*d(n-1) + 600*d(n-2), n>=2, with d(n) := A089274(n)= A071951(n+5, 5)= (16875*30^n - 20000*20^n + 6048*12^n - 405*6^n + 2*2^n)/2520.

A089503 Triangle of numbers used for basis change between certain falling factorials.

Original entry on oeis.org

1, 1, 4, 1, 12, 30, 1, 24, 168, 336, 1, 40, 540, 2880, 5040, 1, 60, 1320, 13200, 59400, 95040, 1, 84, 2730, 43680, 360360, 1441440, 2162160, 1, 112, 5040, 117600, 1528800, 11007360, 40360320, 57657600, 1, 144, 8568, 274176, 5140800, 57576960
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

Used to relate array A078739 ((2,2)-Stirling2) to triangle A071951 (Legendre-Stirling).

Examples

			The triangle begins:
n\m 1   2    3      4       5        6        7        8 ...
1:  1
2:  1   4
3:  1  12   30
4:  1  24  168    336
5:  1  40  540   2880    5040
6:  1  60 1320  13200   59400    95040
7:  1  84 2730  43680  360360  1441440  2162160
8:  1 112 5040 117600 1528800 11007360 40360320 57657600
...
Row 9:  1 144 8568 274176 5140800 57576960 374250240 1283143680 1764322560
Row 10: 1 180 13680 574560 14651280 234420480 2344204800 14065228800 45711993600 60949324800.
Reformatted - _Wolfdieter Lang_, Apr 10 2013
n=3: fallfac(x+2,6) = 1*fallfac(x,6) + 12*fallfac(x,5) + 30*fallfac(x,4).
		

Programs

  • Mathematica
    eq[n_, x_] := Sum[FactorialPower[x, 1 - m + 2*n]*a[n, m], {m, 1, n}] == FactorialPower[x + n - 1, 2*n]; eq[n_] := Table[eq[n, x], {x, n + 1, 2*n}]; row[n_] := First[Table[a[n, m], {m, 1, n}] /. Solve[eq[n]]]; Array[row, 10] // Flatten (* Jean-François Alcover, Sep 02 2016 *)
    a[n_,m_]:= Binomial[n-1,m-1]*Binomial[2n,m-1]*Gamma[m]; Table[a[n,m],{n,1,10},{m,1,n}] (* Stefano Negro, Nov 10 2021 *)

Formula

fallfac(x+n-1, 2*n) = Sum_{m=1..n} a(n, m)*fallfac(x, 2*n-(m-1)), n>=1 where fallfac(x, k) := Product_{j=1..k} (x+1-j), with fallfac(n, k) = A068424(n, k) (falling factorials). a(n, m) = 0 if n < m.
T(n, m) = binomial(n-1, m-1)*binomial(2n, m-1)*m!, for 1 <= m <= n, with binomial(n, m) = A007318. - Stefano Negro, Nov 10 2021
Previous Showing 11-20 of 22 results. Next