cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A211270 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y = 2n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 4, 1, 3, 3, 2, 1, 4, 2, 2, 3, 3, 1, 5, 1, 3, 3, 2, 3, 5, 1, 2, 3, 4, 1, 5, 1, 3, 5, 2, 1, 5, 2, 4, 3, 3, 1, 5, 3, 4, 3, 2, 1, 7, 1, 2, 5, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 2, 5, 3, 3, 5, 1, 5, 4, 2, 1, 7, 3, 2, 3, 4, 1, 8, 3, 3, 3, 2, 3, 6, 1, 4, 5
Offset: 1

Views

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(12) counts these pairs: (2,12), (3,8), (4,6).
For n = 2, only the pair (2,2) satisfies the condition, thus a(2) = 1. - _Antti Karttunen_, Sep 30 2018
		

Crossrefs

Programs

  • Maple
    seq(floor((numtheory:-tau(2*n)-1)/2),n=1..100); # Robert Israel, Feb 25 2019
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* this sequence *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
  • PARI
    A211270(n) = sumdiv(2*n,y,(((2*n/y)<=y)&&(y<=n))); \\ Antti Karttunen, Sep 30 2018

Formula

a(n) = floor((A000005(2n)-1)/2). - Robert Israel, Feb 25 2019

Extensions

Term a(2) corrected by Antti Karttunen, Sep 30 2018

A211271 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 4, 2, 2, 1, 4, 2, 2, 2, 4, 1, 4, 1, 4, 2, 2, 3, 4, 1, 2, 2, 6, 1, 4, 1, 4, 3, 2, 1, 6, 2, 4, 2, 4, 1, 3, 3, 6, 2, 2, 1, 7, 1, 2, 3, 5, 3, 4, 1, 4, 2, 6, 1, 6, 1, 2, 4, 4, 3, 4, 1, 8, 2, 2, 1, 7, 3, 2, 2, 6, 1, 6, 3, 4, 2, 2, 3, 7, 1, 4, 3, 7, 1, 4, 1, 6, 5, 2, 1, 6
Offset: 1

Views

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(3) counts this pair: (3,3). - _Antti Karttunen_, Jan 15 2025
a(20) counts these pairs: (3,20), (4,15), (5,12), (6,10).
		

Crossrefs

Cf. A211266.
Cf. also A211262.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
     {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
  • PARI
    A211271(n) = { my(n3=3*n); sumdiv(n3,d,(d <= (n3/d) && (n3/d) <= n)); }; \\ Antti Karttunen, Jan 15 2025

Extensions

Data section extended up to a(108) and a(3) corrected from 0 to 1 by Antti Karttunen, Jan 15 2025

A211272 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 2, 2, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 2, 2, 2, 2, 1, 1, 4, 4, 2, 2, 2, 2, 2, 2, 3, 3, 1, 1, 4, 4, 1, 1, 3, 3, 2, 2, 2, 2, 2, 2, 5, 5, 1, 1, 2, 2, 2, 2, 4, 4, 1, 1, 4, 4, 1, 1, 3, 3, 3, 3, 2, 2, 1, 1, 5, 5, 2, 2
Offset: 1

Views

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(24) counts these pairs: (1,12), (2,6), (3,4).
		

Crossrefs

Programs

  • Magma
    [0] cat [Ceiling(#Divisors( Floor(n/2))/2):n in [2..100]]; // Marius A. Burtea, Feb 07 2020
  • Maple
    [seq(ceil(numtheory:-tau(floor(n/2))/2),n=1..100)]; - Robert Israel, Feb 07 2020
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Formula

a(n) = ceiling(A000005(floor(n/2))/2). - Robert Israel, Feb 07 2020

A211273 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

1, 3, 5, 7, 10, 13, 15, 19, 22, 25, 28, 32, 35, 39, 43, 46, 49, 55, 57, 62, 66, 69, 73, 78, 82, 86, 90, 95, 98, 104, 106, 112, 117, 120, 125, 131, 133, 138, 143, 148, 152, 158, 161, 166, 172, 176, 179, 186, 189, 196, 200, 204, 209, 215, 219, 225, 229, 233
Offset: 1

Views

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(5) counts these pairs: (1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,3)
		

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Extensions

a(1)-a(2) corrected by Sean A. Irvine, Jan 22 2025

A211274 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= 3n.

Original entry on oeis.org

1, 3, 6, 9, 12, 16, 20, 24, 28, 33, 37, 43, 46, 52, 57, 62, 67, 72, 78, 84, 88, 95, 99, 107, 111, 117, 124, 130, 134, 142, 147, 154, 159, 166, 173, 179, 184, 191, 197, 206, 210, 218, 223, 231, 237, 243, 250, 259, 264, 271, 277, 286, 289, 299, 305, 313
Offset: 1

Views

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(4) counts these pairs: (1,1), (1,2), (1,3), (1,4), (2,3), (2,4), (3,3,), (3,4), (4,4).
		

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Extensions

a(1)-a(3) corrected by Sean A. Irvine, Jan 22 2025

A211275 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= floor(n/2).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 5, 5, 6, 6, 8, 8, 9, 9, 11, 11, 13, 13, 15, 15, 16, 16, 19, 19, 20, 20, 22, 22, 24, 24, 27, 27, 28, 28, 31, 31, 32, 32, 35, 35, 37, 37, 39, 39, 40, 40, 44, 44, 46, 46, 48, 48, 50, 50, 53, 53, 54, 54, 58, 58, 59, 59, 62, 62, 64, 64, 66, 66, 68, 68
Offset: 1

Views

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

A347708 Number of distinct possible alternating products of odd-length factorizations of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 1, 2, 1, 4, 2, 1, 1, 5, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 5, 1, 2, 2, 3, 1, 2, 1, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 11 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
Note that it is sufficient to look at only length-1 and length-3 factorizations; cf. A347709.

Examples

			Representative factorizations for each of the a(180) = 7 alternating products:
  (2*2*3*3*5) -> 5
     (2*2*45) -> 45
     (2*3*30) -> 20
     (2*5*18) -> 36/5
     (2*9*10) -> 20/9
     (3*4*15) -> 45/4
        (180) -> 180
		

Crossrefs

The version for partitions is A028310, reverse A347707.
Positions of 1's appear to be A037143 \ {1}.
The even-length version for n > 1 is A072670, strict A211159.
Counting only integers appears to give A293234, with evens A046951.
This is the odd-length case of A347460, reverse A038548.
The any-length version for partitions is A347461, reverse A347462.
The length-3 case is A347709.
A001055 counts factorizations (strict A045778, ordered A074206).
A056239 adds up prime indices, row sums of A112798.
A276024 counts distinct positive subset-sums of partitions.
A292886 counts knapsack factorizations, by sum A293627.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions.
A347050 = factorizations w/ an alternating permutation, complement A347706.
A347441 counts odd-length factorizations with integer alternating product.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@Select[facs[n],OddQ[Length[#]]&]]],{n,100}]
  • PARI
    altprod(facs) = prod(i=1,#facs,facs[i]^((-1)^(i-1)));
    A347708aux(n, m=n, facs=List([])) = if(1==n, if((#facs)%2, altprod(facs), 0), my(newfacs, r, rats=List([])); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); r = A347708aux(n/d, d, newfacs); if(r, rats = concat(rats,r)))); (rats));
    A347708(n) = if(1==n,0,#Set(A347708aux(n))); \\ Antti Karttunen, Jan 29 2025

Formula

Conjecture: For n > 1, a(n) = 1 + A347460(n) - A038548(n) + A072670(n).

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 29 2025

A260804 Number of ways to write n as n = x * y * z * t + x + y + z + t where 1 <= x <= y <= z <= t <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 3, 0, 3, 2, 2, 1, 5, 0, 1, 2, 4, 1, 4, 0, 3, 3, 2, 1, 4, 2, 3, 2, 2, 0, 5, 1, 4, 1, 2, 3, 6, 1, 2, 2, 5, 1, 4, 0, 4, 3, 3, 1, 6, 1, 2, 4, 4, 2, 4, 1, 4, 2, 2, 1, 8, 2, 4, 2, 4, 2, 5, 1, 4, 2, 2, 3, 8, 1, 3, 4, 4, 0, 4, 1, 6, 4, 3, 0
Offset: 0

Views

Author

David A. Corneth, Jul 31 2015

Keywords

Comments

a(n) = A071689(n) - A001399(n) = A071689(n) - round((n+3)^2/12).
From Vladimir Shevelev, Aug 03 2015: (Start)
Is the set of n for which a(n)=0 finite?
Note that this set contains only numbers n of the form prime + 1. Indeed, if n-1>=4 is a composite number, then n = p*q + 1, p>=2, q>=2. If p <= q, then, for x=1, y=1, z = p-1, t = q-1, we have
x*y*z*t + x + y + z + t = 1*1*(p-1)*(q-1) + 1 + 1 + (p-1) + (q-1) = p*q + 1 = n; so a(n) >= 1. If p > q, then we set x=1, y=1, z = q-1, t = p-1, and again a(n) >= 1.
Note also that limsup_{n->infinity} (a(n)) = infinity. Indeed, this limit is realized, say, on n = primorials +1 (A002110), since, when m goes to infinity, the number of representations of n - 1 = A002110(m) of the form p*q tends to infinity. On primorials +1 > 2 we have a subsequence: 0,1,3,8,27,... .
A generalization. For k>=2, let b_k(n) be the number of ways to write n as n = x_1 * x_2 *...* x_k + x_1 + x_2 + ... + x_k, where 1 <= x_1 <= x_2 <= ... <= x_k <= n.
Then, for n >= k-1, b_k(n) = 0 yields that n - k + 3 is prime with similar other comments. In particular, only b_2(n) = 0 if and only if n+1 is 1 or prime (cf. A072670). (End)

Crossrefs

Programs

  • Mathematica
    xmax = 9; ymax = 21; zmax = 98; (* When extending data, terms where maxima for x, y or z are reached have to be checked one by one. *)
    r[n_] := r[n] = Module[{r1, r2, r3, rn}, r1 = Reap[Do[rn = Reduce[n == x y z t + x + y + z + t && 1 <= x <= y <= z <= t <= n, t, Integers]; If[rn =!= False, Sow[{x, y, z, t} /. {ToRules[rn]}]], {x, 1, xmax}, {y, 1, ymax}, {z, 1, zmax}]]; If[r1 == {Null, {}} , {}, r2 = r1[[2, 1]]; r3 = Flatten[r2, 1]; If[Max[r3[[All, 1]]] == xmax, Print[ "xmax reached at n = ", n]]; If[Max[r3[[All, 2]]] == ymax, Print["ymax reached at n = ", n]]; If[Max[r3[[All, 3]]] == zmax, Print["zmax reached at n = ", n]]; r3]];
    a[n_] := Length[r[n]];
    Table[Print["a(", n, ") = ", a[n], " ", r[n]]; a[n], {n, 0, 109}] (* Jean-François Alcover, Nov 19 2018 *)

Formula

If A260803(n) > 0, then a(n+1) > 0. So if a(n+1) = 0, then A260803(n) = 0. Converse statement is not true. For example, a(24) > 0, while A260803(23) = 0. - Vladimir Shevelev, Aug 14 2015

A067432 Number of ways to represent the n-th prime in form p*q+p+q, where p and q are primes (see A066938).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 1, 1, 0, 0, 3, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 2, 0, 2, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 4, 0, 3, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 4, 0, 1, 1, 1, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 15 2002

Keywords

Comments

a(A049084(A066938(n))) > 0; a(A049084(A198273(n))) = 0; a(A049084(A198277(n))) = n and a(A049084(m)) <> n for m < A198277(n). [Reinhard Zumkeller, Oct 23 2011]
a(n) < A072670(n).

Examples

			a(15) = 2 as A000040(15) = 47 = 3*11+3+11 = 5*7+5+7.
		

Crossrefs

Programs

  • Haskell
    a067432 n = length [p | let prime_n = a000040 n,
       p <- takeWhile (< a000196 prime_n) a000040_list,
       let (q,m) = divMod (prime_n - p) (p + 1),
       m == 0, a010051 q == 1]
    a067432_list = map a067432 [1..]
    -- Reinhard Zumkeller, Oct 23 2011

A081757 Number of ways to write n as i*j+i-j, 0

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 4, 2, 3, 2, 2, 1, 6, 1, 2, 2, 3, 2, 4, 1, 3, 2, 4, 1, 5, 1, 2, 3, 3, 2, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 2, 3, 2, 2, 2, 6, 1, 3, 2, 4, 1, 4, 1, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 08 2003

Keywords

Examples

			n=25 = 2*23+2-23 = 3*11+3-11 = 4*7+4-7, therefore a(25)=3.
		

Crossrefs

Cf. A072670.

Programs

  • Haskell
    a081757 n = length [() | j <- [2..n], i <- [1..j-1], i * j + i - j == n]
    -- Reinhard Zumkeller, May 24 2013

Formula

G.f.: Sum(x^(n^2+3*n)/(1-x^n),n = 1 .. infinity). - Vladeta Jovovic, May 13 2008
Previous Showing 11-20 of 29 results. Next