cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 104 results. Next

A275710 Decimal expansion of the Dirichlet eta function at 7.

Original entry on oeis.org

9, 9, 2, 5, 9, 3, 8, 1, 9, 9, 2, 2, 8, 3, 0, 2, 8, 2, 6, 7, 0, 4, 2, 5, 7, 1, 3, 1, 3, 3, 3, 9, 3, 6, 8, 5, 2, 3, 1, 1, 1, 5, 6, 9, 2, 4, 3, 1, 4, 0, 6, 8, 5, 1, 6, 2, 9, 5, 1, 3, 0, 8, 7, 5, 6, 2, 6, 7, 0, 2, 0, 5, 2, 1, 8, 6, 4, 7, 0, 5, 1, 9, 8, 1, 3, 1, 4, 2, 0, 3, 7, 7, 4, 5, 7, 2, 3, 9, 7, 0
Offset: 0

Views

Author

Terry D. Grant, Aug 06 2016

Keywords

Examples

			0.99259381992283028267...
		

Crossrefs

Cf. A002162 (value at 1), A013665, A072691 (value at 2), A197070 (value at 3), A267315 (value at 4), A267316 (value at 5), A275703 (value at 6), A334668, A334669, A347150, A347059.

Programs

  • Mathematica
    RealDigits[63 Zeta[7]/64, 10, 100] [[1]]
  • PARI
    -polylog(7, -1) \\ Michel Marcus, Aug 20 2021
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1, 10000): s -= (-1)^i / i^7
    print(s) # Terry D. Grant, Aug 06 2016
    

Formula

eta(7) = 63*zeta(7)/64 = (63*A013665)/64.
eta(7) = Lim_{n -> infinity} A334668(n)/A334669(n). - Petros Hadjicostas, May 07 2020
Equals Sum_{k>=1} (-1)^(k+1) / k^7. - Sean A. Irvine, Aug 19 2021

A164108 Decimal expansion of Pi^4/24.

Original entry on oeis.org

4, 0, 5, 8, 7, 1, 2, 1, 2, 6, 4, 1, 6, 7, 6, 8, 2, 1, 8, 1, 8, 5, 0, 1, 3, 8, 6, 2, 0, 2, 9, 3, 7, 9, 6, 3, 5, 4, 0, 5, 3, 1, 6, 0, 6, 9, 6, 9, 5, 2, 2, 5, 9, 0, 3, 8, 1, 1, 1, 6, 0, 8, 0, 7, 9, 1, 5, 4, 5, 2, 3, 1, 0, 7, 0, 1, 1, 3, 3, 1, 7, 4, 5, 8, 8, 4, 1, 1, 1, 3, 4, 7, 8, 1, 3, 7, 4, 6, 8, 9, 6, 2, 3, 7, 1
Offset: 1

Views

Author

R. J. Mathar, Aug 10 2009

Keywords

Comments

Volume of the 8-dimensional unit sphere.

Examples

			4.0587121264167682181850138620293796354053160696952259038...
		

Crossrefs

Programs

Formula

Equals A164109/8 = A092425/24 = A072691*A102753.
Pi^4/240 = -Integral_{x=0..1} log(1-x)*log(1+x)^2/x dx (Vălean, 2017). - Amiram Eldar, Mar 26 2022

A304411 If n = Product (p_j^k_j) then a(n) = Product ((p_j + 1)*k_j).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 9, 8, 18, 12, 24, 14, 24, 24, 12, 18, 24, 20, 36, 32, 36, 24, 36, 12, 42, 12, 48, 30, 72, 32, 15, 48, 54, 48, 48, 38, 60, 56, 54, 42, 96, 44, 72, 48, 72, 48, 48, 16, 36, 72, 84, 54, 36, 72, 72, 80, 90, 60, 144, 62, 96, 64, 18, 84, 144, 68, 108, 96, 144, 72, 72
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(24) = a(2^3*3) = (2 + 1)*3 * (3 + 1)*1 = 36.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((#[[1]] + 1) #[[2]] & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 72}]
    Table[Total[Select[Divisors[n], SquareFreeQ]] DivisorSigma[0, n/Last[Select[Divisors[n], SquareFreeQ]]], {n, 72}]
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); (p+1)*e)} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A005361(n)*A048250(n) = A000005(n/A007947(n))*A000203(A007947(n)).
a(p^k) = (p + 1)*k where p is a prime and k > 0.
a(n) = Product_{p|n} (p + 1) if n is a squarefree (A005117).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = A072691 * A330596 = 0.6156455744... . - Amiram Eldar, Nov 30 2022

A324706 The sum of the tri-unitary divisors of n.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 15, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 60, 26, 42, 40, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 90, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 120, 72, 120, 80, 90, 60, 120, 62, 96, 80, 85, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2019

Keywords

Comments

A divisor d of n is tri-unitary if the greatest common bi-unitary divisor of d and n/d is 1.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3, (p^4-1)/(p-1), If[e==6, (p^8-1)/(p^2-1), p^e+1]]; a[1]=1; a[n_]:= Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    A324706(n) = { my(f = factor(n)); prod(i=1, #f~, if(3==f[i,2], sigma(f[i,1]^f[i,2]), if(6==f[i,2], ((f[i,1]^8)-1)/((f[i,1]^2)-1), 1+(f[i,1]^f[i,2])))); }; \\ Antti Karttunen, Mar 12 2019

Formula

Multiplicative with a(p^3) = 1 + p + p^2 + p^3, a(p^6) = 1 + p^2 + p^4 + p^6, and a(p^e) = 1 + p^e otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^3 + 1/p^4 - 2/p^6 + 2/p^8 - 1/p^9 - 1/p^12 + 1/p^13) = 0.72189237802... . - Amiram Eldar, Nov 24 2022

A344221 a(n) = Sum_{k=1..n} tau(gcd(k,n)^3), where tau(n) is the number of divisors of n.

Original entry on oeis.org

1, 5, 6, 13, 8, 30, 10, 29, 21, 40, 14, 78, 16, 50, 48, 61, 20, 105, 22, 104, 60, 70, 26, 174, 43, 80, 66, 130, 32, 240, 34, 125, 84, 100, 80, 273, 40, 110, 96, 232, 44, 300, 46, 182, 168, 130, 50, 366, 73, 215, 120, 208, 56, 330, 112, 290, 132, 160, 62, 624, 64, 170, 210, 253, 128, 420
Offset: 1

Views

Author

Seiichi Manyama, May 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[0,GCD[k,n]^3],{k,n}],{n,100}] (* Giorgos Kalogeropoulos, May 13 2021 *)
    f[p_, e_] := (p^e*(p + 2) - 3)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sum(k=1, n, numdiv(gcd(k, n)^3));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d^3));
    
  • PARI
    a(n) = n*sumdiv(n, d, 3^omega(d)/d);

Formula

a(n) = Sum_{d|n} phi(n/d) * tau(d^3).
a(n) = n * Sum_{d|n} 3^omega(d) / d.
If p is prime, a(p) = 3 + p.
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = (p^e*(p + 2) - 3)/(p - 1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 + 2/p^2) = 1.8019184198... . (End)

A360522 a(n) = Sum_{d|n} Max({d'; d'|n, gcd(d, d') = 1}).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 11, 11, 18, 12, 24, 14, 24, 24, 20, 18, 33, 20, 36, 32, 36, 24, 44, 27, 42, 30, 48, 30, 72, 32, 37, 48, 54, 48, 66, 38, 60, 56, 66, 42, 96, 44, 72, 66, 72, 48, 80, 51, 81, 72, 84, 54, 90, 72, 88, 80, 90, 60, 144, 62, 96, 88, 70, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

a(n) is the sum of delta_d(n) over the divisors d of n, where delta_d(n) is the greatest divisor of n that is relatively prime to n.
Denoted by Sur(n) in Khan (2005).
Related sequences: A048691(n) = Sum_{d|n} #{d'; d' | n, gcd(d, d') = 1}, and A328485(n) = Sum_{d|n} Sum_{d' | n, gcd(d, d') = 1} d' (number and sum of divisors instead of maximal divisor, respectively).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e + e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]);}

Formula

Multiplicative with a(p^e) = p^e + e.
Dirichlet g.f.: zeta(s-1)*zeta(s)^2 * Product_{p prime} (1 - 1/p^s - 1/p^(2*s-1) + 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = A072691 * A065465 = A152649 * A330523 = 0.7250160726810604158... .
a(n) <= A000203(n) with equality if and only if n is squarefree (A005117).
limsup_{n->oo} sigma(n)/a(n) = oo, where sigma(n) is the sum of divisors of n (A000203) (Khan, 2002).
liminf_{n->oo} a(n)/usigma(n) = 1, where usigma(n) is the sum of unitary divisors of n (A034448) (Khan, 2005).
limsup_{n->oo} a(n)/usigma(n) = (55/54) * Product_{p prime} (1 + 1/(p^2+1)) = 1.4682298236... (Khan, 2005).

A097448 If n is square, replace it with sqrt(n).

Original entry on oeis.org

0, 1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 8, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 0

Views

Author

Cino Hilliard, Aug 23 2004

Keywords

Examples

			Among the first five integers 0, 1, 2, 3, and 4 the squares are 0, 1, and 4. Thus the first five terms in the sequence are 0, 1, 2, 3, and 2.
		

Crossrefs

Programs

  • Mathematica
    Table[If[IntegerQ[Sqrt[n]],Sqrt[n],n],{n,0,100}] (* Harvey P. Dale, Jul 09 2017 *)
  • PARI
    g(n) = for(x=0,n,if(issquare(x),y=sqrt(x),y=x);print1(floor(y)","))
    
  • PARI
    for(n=0,74,print1(if(issquare(n,&m),m,n)", ")) \\ Zak Seidov, Feb 21 2013

Formula

Sum_{n>=1} (-1)^(n+1)/n = 2*log(2) - Pi^2/12 = A016627 - A072691. - Amiram Eldar, Jul 07 2024

A175475 Decimal expansion of the Dickman function evaluated at 1/3.

Original entry on oeis.org

0, 4, 8, 6, 0, 8, 3, 8, 8, 2, 9, 1, 1, 3, 1, 5, 6, 6, 9, 0, 7, 1, 8, 3, 0, 3, 9, 3, 4, 3, 4, 0, 7, 4, 2, 1, 3, 5, 4, 3, 2, 9, 5, 8, 0, 4, 7, 8, 1, 4, 0, 5, 4, 2, 3, 1, 6, 8, 0, 5, 2, 8, 5, 0, 5, 1, 4, 8, 8, 2, 3, 5, 7, 3, 5, 9, 3, 2, 4, 7, 2, 0, 0, 4, 0, 9, 1, 2, 9, 3, 3, 7, 1, 1, 6, 7, 7, 0, 7, 9, 6, 8, 0, 4, 4
Offset: 0

Views

Author

R. J. Mathar, May 25 2010

Keywords

Comments

Density of the cube root-smooth numbers, see A090081. - Charles R Greathouse IV, Jul 14 2014

Examples

			F(1/3) = 0.04860838829113156690718...
		

Crossrefs

Programs

  • Mathematica
    N[1 - Log[3] + Log[3]^2/2 - Pi^2/12 + PolyLog[2, 1/3], 105] // RealDigits // First // Prepend[#, 0]& (* Jean-François Alcover, Feb 05 2013 *)
  • PARI
    1-log(3)+log(3)^2/2-Pi^2/12+polylog(2,1/3) \\ Charles R Greathouse IV, Jul 14 2014

Formula

Equals 1 - log(3) + log^2(3)/2 - Pi^2/12 + Sum_{n>=1} 1/(n^2*3^n), where Sum_{n>=1} 1/(n^2*3^n) = 0.3662132299770634876167462976642627638...

A299692 a(n) is the total area that is visible in the perspective view of the stepped pyramid with n levels described in A245092.

Original entry on oeis.org

3, 10, 20, 35, 51, 75, 97, 128, 159, 197, 231, 283, 323, 375, 429, 492, 544, 619, 677, 759, 833, 913, 983, 1091, 1172, 1266, 1360, 1472, 1560, 1692, 1786, 1913, 2027, 2149, 2267, 2430, 2542, 2678, 2812, 2982, 3106, 3286, 3416, 3588, 3756, 3920, 4062, 4282, 4437, 4630, 4804, 5006, 5166, 5394, 5576, 5808, 6002
Offset: 1

Views

Author

Omar E. Pol, Mar 06 2018

Keywords

Comments

a(n) is also the sum of all divisors of all positive integers <= n, plus the n-th oblong number, since A024916(n) equals the total area of the horizontal terraces of the stepped pyramid with n levels, and A002378(n) equals the total area of the vertical sides that are visible (see link).
a(n) is also the sum of all aliquot divisors of all positive integers <= n, plus the n-th triangular matchstick number.

Examples

			For n = 3 the areas of the terraces of the first three levels starting from the top of the stepped pyramid are 1, 3 and 4 respectively. On the other hand the areas of the vertical sides that are visible are [1, 1], [2, 2], [2, 1, 1, 2], or in successive levels 2, 4, 6 respectively. Hence the total area that is visible is equal to 1 + 3 + 4 + 2 + 4 + 6 = 8 + 12 = 20, so a(3) = 20.
For n = 16 the total number of horizontal and vertical cells that are visible are 220 and 272 respectively. So a(16) = 220 + 272 = 492 (see the link).
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[DivisorSigma[1, n] + 2*n, {n, 1, 50}]] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    a(n) = sum(k=1, n, n\k*k) + n*(n+1); \\ Michel Marcus, Jun 21 2018
    
  • Python
    from math import isqrt
    def A299692(n): return n*(n+1)+(-(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 22 2023

Formula

a(n) = A024916(n) + A002378(n).
a(n) = A153485(n) + A045943(n).
a(n) = A328366(n)/2. - Omar E. Pol, Apr 22 2020
a(n) = c * n^2 + O(n*log(n)), where c = zeta(2)/2 + 1 = A072691 + 1 = 1.822467... . - Amiram Eldar, Mar 21 2024

A323309 The sum of exponential semiproper divisors of n.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 18, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 54, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 66, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, Jan 10 2019

Keywords

Comments

An exponential semiproper divisor of n is a divisor d such that rad(d) = rad(n) and GCD(d/rad(n), n/d) = 1, were rad(n) is the largest squarefree divisor of n (A007947).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e==1, p, p^e + p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, if (f[k,2] > 1, f[k,1] += f[k,1]^f[k,2]); f[k,2] = 1); factorback(f); \\ Michel Marcus, Jan 10 2019

Formula

a(n) = A007947(n) * A034448(n/A007947(n)).
Multiplicative with a(p^e) = p for e = 1 and p^e + p otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.5628034365... . - Amiram Eldar, Dec 01 2022
Previous Showing 41-50 of 104 results. Next