cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 55 results. Next

A269559 Decimal expansion of Psi(log(2)), negated.

Original entry on oeis.org

1, 2, 3, 9, 5, 9, 7, 2, 7, 9, 6, 1, 7, 6, 1, 8, 5, 0, 8, 2, 4, 4, 1, 2, 7, 5, 5, 1, 6, 8, 6, 0, 8, 4, 2, 4, 5, 4, 3, 3, 2, 8, 9, 5, 2, 2, 6, 8, 7, 4, 2, 0, 8, 6, 6, 4, 6, 1, 6, 4, 8, 9, 8, 8, 8, 1, 9, 4, 0, 6, 3, 8, 9, 3, 3, 4, 5, 3, 5, 9, 0, 1, 5, 8, 7, 3, 2, 6, 0, 6, 9, 4, 5, 7, 3, 4, 8, 8, 2, 3, 8, 2, 0
Offset: 1

Views

Author

Keywords

Comments

Psi(x) is the digamma function (logarithmic derivative of the Gamma function).

Examples

			-1.2395972796176185082441275516860842454332895226874208...
		

Crossrefs

Programs

  • MATLAB
    format long; psi(log(2))
  • Maple
    evalf(Psi(ln(2)), 120);
  • Mathematica
    RealDigits[PolyGamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(log(2))
    

A284868 Decimal expansion of the derivative Ai'(0) (negated), where Ai is the Airy function of the first kind.

Original entry on oeis.org

2, 5, 8, 8, 1, 9, 4, 0, 3, 7, 9, 2, 8, 0, 6, 7, 9, 8, 4, 0, 5, 1, 8, 3, 5, 6, 0, 1, 8, 9, 2, 0, 3, 9, 6, 3, 4, 7, 9, 0, 9, 1, 1, 3, 8, 3, 5, 4, 9, 3, 4, 5, 8, 2, 2, 1, 0, 0, 0, 1, 8, 1, 3, 8, 5, 6, 1, 0, 2, 7, 7, 2, 6, 7, 6, 7, 9, 0, 2, 8, 0, 6, 5, 4, 1, 9, 6, 4, 0, 5, 8, 2, 7, 2, 7, 5, 3, 8, 4, 3, 1, 3, 3, 7, 1
Offset: 0

Views

Author

Jean-François Alcover, Apr 04 2017

Keywords

Examples

			-0.2588194037928067984051835601892039634790911383549345822100018138561...
		

Crossrefs

Cf. A096714, A096715, A269892, A269893, A073005 (Gamma(1/3)), A284867 (Ai(0)).

Programs

  • Mathematica
    RealDigits[AiryAi'[0], 10, 105][[1]]
  • PARI
    -derivnum(x=0,airy(x)[1]) \\ Charles R Greathouse IV, Apr 26 2019

Formula

Ai'(0) = -1/(3^(1/3)*Gamma(1/3)).

A204067 Decimal expansion of the Fresnel Integral, Integral_{x >= 0} cos(x^3) dx.

Original entry on oeis.org

7, 7, 3, 3, 4, 2, 9, 4, 2, 0, 7, 7, 9, 8, 9, 8, 5, 0, 1, 9, 6, 1, 0, 1, 6, 1, 1, 2, 9, 5, 2, 1, 7, 3, 4, 0, 9, 2, 4, 8, 0, 6, 8, 4, 7, 2, 2, 4, 2, 1, 5, 6, 7, 2, 6, 6, 2, 0, 3, 1, 9, 5, 5, 4, 7, 2, 9, 7, 6, 5, 7, 1, 1, 6, 1, 1, 6, 0, 6, 4, 6, 6, 5, 0, 3, 8, 6, 4, 9, 5, 7, 5, 9, 9, 9, 6, 0
Offset: 0

Views

Author

R. J. Mathar, Jan 10 2013

Keywords

Examples

			0.7733429420779898501961016...
		

Crossrefs

Programs

  • Maple
    evalf(int(cos(x^3),x=0..infinity),120); # Muniru A Asiru, Sep 26 2018
  • Mathematica
    RealDigits[Gamma[1/3]/(2*Sqrt[3]), 10, 120][[1]] (* Amiram Eldar, May 26 2023 *)
  • PARI
    Pi/(3*gamma(2/3)) \\ Gheorghe Coserea, Sep 26 2018
    
  • PARI
    intnum(x=[0, -2/3], [oo, I], cos(x)/x^(2/3))/3 \\ Gheorghe Coserea, Sep 26 2018

Formula

Equals Pi/(3*Gamma(2/3)) = A019670 / A073006.
Equals Gamma(1/3)/(2*sqrt(3)) = A073005 / A010469. - Amiram Eldar, May 26 2023

A290570 Decimal expansion of Integral_{0..Pi/2} dtheta/(cos(theta)^3 + sin(theta)^3)^(2/3).

Original entry on oeis.org

1, 7, 6, 6, 6, 3, 8, 7, 5, 0, 2, 8, 5, 4, 4, 9, 9, 5, 7, 3, 1, 3, 6, 8, 9, 4, 9, 9, 6, 4, 8, 4, 3, 8, 7, 0, 2, 5, 7, 1, 8, 6, 8, 5, 3, 8, 2, 0, 2, 5, 5, 7, 5, 3, 0, 1, 2, 6, 9, 0, 5, 2, 4, 1, 8, 3, 5, 4, 5, 3, 0, 0, 1, 7, 2, 8, 1, 0, 7, 9, 1, 3, 6, 0, 5, 4, 8, 6, 9, 9, 3, 3, 3, 3, 3, 8, 3, 5, 8, 7, 2, 1, 9, 3, 4
Offset: 1

Views

Author

Jean-François Alcover, Aug 07 2017

Keywords

Examples

			1.766638750285449957313689499648438702571868538202557530126905241835453...
		

References

  • Oscar S. Adams, Elliptic Functions Applied to Conformal World Maps, Special Publication No. 112 of the U.S. Coast and Geodetic Survey, 1925. See constant K p. 9 and previous pages.

Crossrefs

Cf. A073005 (Gamma(1/3)), A073006 (Gamma(2/3)), A197374 (Beta(1/3,1/3)).

Programs

  • Mathematica
    RealDigits[(1/3)*Gamma[1/3]^2/Gamma[2/3], 10, 105]
  • PARI
    (1/3)*gamma(1/3)^2/gamma(2/3) \\ Michel Marcus, Aug 07 2017

Formula

Equals (1/3)*Beta(1/3,1/3).
Equals (1/3)*Gamma(1/3)^2/Gamma(2/3).
Equals A197374/3. - Michel Marcus, Jun 08 2020
From Peter Bala, Mar 01 2022: (Start)
Equals 2*Sum_{n >= 0} (1/(3*n+1) + 1/(3*n-2))*binomial(1/3,n). Cf. A002580 and A175576.
Equals Sum_{n >= 0} (-1)^n*(1/(3*n+1) - 1/(3*n-2))*binomial(1/3,n).
Equals hypergeom([1/3, 2/3], [4/3], 1) = (3/2)*hypergeom([-1/3, -2/3], [4/3], 1) = 2*hypergeom([1/3, 2/3], [4/3], -1) = hypergeom([-1/3, -2/3, 5/6], [4/3, -1/6], -1). (End)

A030651 Continued fraction for Gamma(1/3).

Original entry on oeis.org

2, 1, 2, 8, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 9, 1, 4, 1, 3, 1, 7, 1, 1, 3, 6, 2, 2, 1, 1, 32, 3, 3, 3, 1, 24, 2, 2, 25, 1, 2, 1, 6, 2, 1, 1, 3, 1, 9, 3, 2, 1, 6, 7, 2, 8, 2, 5, 1, 5, 1, 2, 2, 2, 2, 4, 3, 1, 5, 1, 15, 1, 1, 2, 4, 3, 3, 1, 5, 1, 4, 1, 8, 1, 3, 1, 1, 8, 2, 1, 2, 1, 514, 1, 2, 1, 1, 1
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it)

Keywords

Examples

			Gamma(1/3) = 2.67893853470774... = 2 + 1/(1 + 1/(2 + 1/(8 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 20 2009
		

Crossrefs

Cf. A030652, A073005 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Gamma[1/3], 50] (* Alonso del Arte, Mar 30 2020 *)
  • PARI
    { default(realprecision, 1080); x=contfrac(gamma(1/3)); for (n=1, 1000, write("b030651.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 20 2009

Formula

Note that 3 * Gamma(1/3) * Gamma(2/3) = 2 * Pi * sqrt(3).

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A204068 Decimal expansion of the Fresnel Integral Integral_{x>=0} sin(x^3) dx.

Original entry on oeis.org

4, 4, 6, 4, 8, 9, 7, 5, 5, 7, 8, 4, 6, 2, 4, 6, 0, 5, 6, 0, 9, 2, 8, 2, 1, 5, 6, 8, 2, 9, 1, 1, 2, 9, 4, 0, 6, 8, 8, 1, 1, 4, 8, 9, 6, 3, 2, 6, 2, 1, 6, 8, 5, 0, 1, 5, 8, 4, 0, 4, 7, 2, 1, 2, 6, 5, 0, 6, 9, 6, 0, 1, 6, 9, 4, 6, 2, 3, 9, 6, 9, 9, 2, 3, 4, 9, 7, 1, 4, 8, 1, 7, 3, 5, 3, 1, 4, 6, 4, 9, 0, 3, 1, 9, 3
Offset: 0

Views

Author

R. J. Mathar, Jan 10 2013

Keywords

Comments

Imaginary part associated with A204067.

Examples

			0.446489755784624605609282...
		

Crossrefs

Programs

  • Maple
    evalf(Pi/GAMMA(2/3)/3^(3/2) ) ;
  • Mathematica
    RealDigits[Gamma[1/3]/6, 10, 120][[1]] (* Amiram Eldar, May 26 2023 *)

Formula

Equals Pi/(Gamma(2/3)* 3^(3/2)) = A073010 / A073006.
(this value)^2 + A204067^2 = A202623^2.
Equals Gamma(1/3)/6 = A073005 / 6. - Amiram Eldar, May 26 2023

A376859 Decimal expansion of Product_{k=1..4} Gamma(k/3).

Original entry on oeis.org

3, 2, 3, 9, 3, 7, 1, 3, 4, 0, 7, 1, 6, 9, 7, 3, 2, 0, 6, 1, 8, 0, 0, 6, 6, 0, 1, 1, 6, 3, 0, 7, 9, 4, 8, 9, 8, 0, 1, 2, 1, 3, 7, 8, 2, 4, 5, 5, 4, 5, 1, 2, 5, 1, 0, 9, 1, 4, 4, 2, 6, 6, 9, 4, 0, 0, 1, 7, 7, 7, 1, 2, 5, 6, 9, 6, 7, 7, 0, 0, 6, 5, 8, 8, 3, 9, 0, 1, 1, 8
Offset: 1

Views

Author

Paolo Xausa, Oct 09 2024

Keywords

Examples

			3.23937134071697320618006601163079489801213782...
		

Crossrefs

Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376911 (m = 5 and m = 6), A376912 (m = 7), A376913 (m = 8).

Programs

  • Mathematica
    First[RealDigits[2*Pi*Gamma[4/3]/Sqrt[3], 10, 100]]

Formula

Equals 2*Pi*Gamma(1/3)/(3*sqrt(3)) = 2*Pi*Gamma(4/3)/sqrt(3) = A186706*A202623 (cf. eq. 86 in Weisstein link).

A376911 Decimal expansion of Product_{k=1..5} Gamma(k/3).

Original entry on oeis.org

2, 9, 2, 4, 3, 2, 7, 2, 2, 9, 9, 5, 2, 4, 0, 2, 5, 5, 3, 7, 2, 8, 7, 3, 8, 0, 7, 4, 0, 3, 7, 3, 7, 8, 1, 1, 4, 1, 6, 7, 0, 2, 2, 0, 4, 6, 5, 8, 9, 8, 6, 3, 8, 8, 9, 3, 0, 7, 6, 5, 9, 0, 7, 4, 4, 3, 5, 5, 6, 8, 8, 3, 6, 2, 7, 2, 3, 5, 7, 1, 0, 9, 0, 3, 7, 5, 6, 2, 4, 8
Offset: 1

Views

Author

Paolo Xausa, Oct 11 2024

Keywords

Examples

			2.9243272299524025537287380740373781141670220...
		

Crossrefs

Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376912 (m = 7), A376913 (m = 8).

Programs

  • Mathematica
    First[RealDigits[8/27*Pi^2, 10, 100]]

Formula

Equals Product_{k=1..6} Gamma(k/3) = (8/27)*Pi^2 = (8/27)*A002388 (cf. eqs. 87 and 88 in Weisstein link).
Equals 2*A214549. - Hugo Pfoertner, Oct 11 2024

A376912 Decimal expansion of Product_{k=1..7} Gamma(k/3).

Original entry on oeis.org

3, 4, 8, 1, 8, 1, 9, 0, 6, 8, 6, 2, 8, 7, 3, 5, 9, 3, 9, 5, 9, 8, 9, 5, 2, 0, 6, 2, 9, 2, 2, 7, 4, 2, 2, 8, 8, 0, 0, 7, 3, 3, 6, 8, 0, 9, 8, 1, 9, 7, 4, 7, 2, 6, 8, 7, 7, 5, 6, 3, 6, 2, 8, 9, 2, 7, 9, 4, 8, 9, 3, 0, 6, 8, 3, 9, 9, 4, 6, 5, 2, 6, 8, 2, 8, 0, 4, 8, 0, 3
Offset: 1

Views

Author

Paolo Xausa, Oct 11 2024

Keywords

Examples

			3.4818190686287359395989520629227422880073368098...
		

Crossrefs

Cf. A002388.
Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376911 (m = 5 and m = 6), A376913 (m = 8).

Programs

  • Mathematica
    First[RealDigits[32/243*Pi^2*Gamma[1/3], 10, 100]]

Formula

Equals (32/243)*Pi^2*Gamma(1/3) = (32/243)*A002388*A073005 (cf. eq. 89 in Weisstein link).

A376913 Decimal expansion of Product_{k=1..8} Gamma(k/3).

Original entry on oeis.org

5, 2, 3, 8, 6, 5, 9, 6, 2, 5, 1, 8, 5, 6, 5, 8, 4, 1, 0, 3, 2, 9, 2, 3, 2, 0, 9, 9, 9, 7, 6, 3, 6, 6, 2, 6, 8, 1, 3, 5, 9, 7, 7, 3, 9, 9, 2, 1, 5, 7, 5, 6, 6, 5, 0, 5, 6, 3, 4, 8, 0, 9, 7, 6, 2, 9, 1, 0, 5, 5, 8, 0, 4, 6, 4, 1, 9, 1, 5, 1, 8, 2, 3, 1, 9, 1, 6, 8, 2, 1
Offset: 1

Views

Author

Paolo Xausa, Oct 11 2024

Keywords

Examples

			5.2386596251856584103292320999763662681359773992...
		

Crossrefs

Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376911 (m = 5 and m = 6), A376912 (m = 7).

Programs

  • Mathematica
    First[RealDigits[640*Pi^3/(2187*Sqrt[3]), 10, 100]]

Formula

Equals 640*Pi^3/(2187*sqrt(3)) = 640*A091925/(3^7*A002194) (cf. eq. 90 in Weisstein link).
Previous Showing 21-30 of 55 results. Next