cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A334401 Decimal expansion of sinh(Pi).

Original entry on oeis.org

1, 1, 5, 4, 8, 7, 3, 9, 3, 5, 7, 2, 5, 7, 7, 4, 8, 3, 7, 7, 9, 7, 7, 3, 3, 4, 3, 1, 5, 3, 8, 8, 4, 0, 9, 6, 8, 4, 4, 9, 5, 1, 8, 9, 0, 6, 6, 3, 9, 4, 7, 8, 9, 4, 5, 5, 2, 3, 2, 1, 6, 3, 3, 6, 1, 0, 6, 1, 6, 4, 5, 7, 9, 2, 4, 6, 6, 7, 1, 7, 4, 0, 7, 9, 0, 9, 4, 1, 6, 0, 1, 8, 5, 5, 2, 8, 2, 4, 0, 6, 7, 6, 4, 4, 4, 6, 7, 9, 4, 8
Offset: 2

Views

Author

Ilya Gutkovskiy, Apr 26 2020

Keywords

Comments

This constant is transcendental.

Examples

			(e^Pi - e^(-Pi))/2 = 11.5487393572577483779773343153884...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sinh[Pi], 10, 110] [[1]]

Formula

Equals Sum_{k>=0} Pi^(2*k+1)/(2*k+1)!.
Equals 2 * Product_{k>=1} (4*k^2+4)/(4*k^2-1).

A107991 Complexity (number of maximal spanning trees) in an unoriented simple graph with nodes {1,2,...,n} and edges {i,j} if i + j > n.

Original entry on oeis.org

1, 1, 1, 3, 8, 40, 180, 1260, 8064, 72576, 604800, 6652800, 68428800, 889574400, 10897286400, 163459296000, 2324754432000, 39520825344000, 640237370572800, 12164510040883200, 221172909834240000, 4644631106519040000, 93666727314800640000
Offset: 1

Views

Author

Roland Bacher, Jun 13 2005

Keywords

Comments

Proof of the formula: check that the associated combinatorial Laplacian has eigenvalues {0,..n-1}\ {floor((n+1)/2)} by exhibiting a basis of eigenvectors (which are very simple).

Examples

			a(1)=a(2)=a(3)=1 because the corresponding graphs are trees.
a(4)=3 because the corresponding graph is a triangle with one of its vertices adjacent to a fourth vertex.
		

References

  • N. Biggs, Algebraic Graph Theory, Cambridge University Press (1974).

Crossrefs

Programs

  • GAP
    List([1..20],n->Factorial(n-1)/Int((n+1)/2)); # Muniru A Asiru, Dec 15 2018
    
  • Magma
    [Factorial(n-1)/Floor((n+1)/2): n in [1..25]]; // Vincenzo Librandi, Dec 15 2018
    
  • Maple
    a:=n->(n-1)!/floor((n+1)/2);
  • Mathematica
    Function[x, 1/x] /@
    CoefficientList[Series[3*Exp[x]/4 + 1/4*Exp[-x] + x/2*Exp[x], {x, 0, 10}], x] (* Pierre-Alain Sallard, Dec 15 2018 *)
    Table[(n - 1)! / Floor[(n + 1) / 2], {n, 1, 30}] (* Vincenzo Librandi, Dec 15 2018 *)
  • PARI
    A107991(n)=(n-1)!/round(n/2) \\ M. F. Hasler, Apr 21 2015
    
  • SageMath
    [factorial(n-1)/floor((n+1)/2) for n in range(1,24)] # Stefano Spezia, May 10 2024

Formula

a(n) = (n-1)!/floor((n+1)/2).
a(n+1) = n!/floor(n/2 + 1). - M. F. Hasler, Apr 21 2015
1/a(n+1) is the coefficient of the power series of 3*exp(x)/4 + 1/4*exp(-x) + x/2*exp(x) ; this function is the sum of f_n(x) where f_0(x)=cosh(x) and f_{n+1} is the primitive of f_n. - Pierre-Alain Sallard, Dec 15 2018
Sum_{n>=1} 1/a(n) = (e + sinh(1))/2 + cosh(1). - Amiram Eldar, Aug 15 2025

A113550 a(n) = product of n successive numbers up to n, if n is odd a(n) = n*(n-1)*.. = n!, if n is even a(n) = n(n+1)(n+2)... 'n' terms.

Original entry on oeis.org

1, 6, 6, 840, 120, 332640, 5040, 259459200, 362880, 335221286400, 39916800, 647647525324800, 6227020800, 1748648318376960000, 1307674368000, 6288139352883548160000, 355687428096000, 29051203810321992499200000, 121645100408832000, 167683548393178540705382400000
Offset: 1

Views

Author

Amarnath Murthy, Nov 03 2005

Keywords

Examples

			a(3) = 3*2*1 = 6.
a(4) = 4*5*6*7 = 840.
		

Crossrefs

Programs

  • Mathematica
    n = 1; anfunc[n_] := (If [EvenQ[n], {an = n, Do[an = an*(n + i), {i, n - 1}]}, an = n! ]; an); Table[anfunc[n], {n, 1, 20}] (* Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Mar 10 2006 *)

Formula

a(2n-1) = (2n-1)!, a(2n) = (4n-1)!/(2n-1)!.
a(2n-1)*a(2n) = (4n-1)!.
Sum_{n>=1} 1/a(n) = sinh(1) + (sqrt(Pi)/2) * (exp(1/4) * erf(1/2) - exp(-1/4) * erfi(1/2)). - Amiram Eldar, Aug 15 2025

Extensions

More terms from Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Mar 10 2006

A334367 Decimal expansion of Sum_{k>=0} 1/(4*k+2)!!.

Original entry on oeis.org

5, 2, 1, 0, 9, 5, 3, 0, 5, 4, 9, 3, 7, 4, 7, 3, 6, 1, 6, 2, 2, 4, 2, 5, 6, 2, 6, 4, 1, 1, 4, 9, 1, 5, 5, 9, 1, 0, 5, 9, 2, 8, 9, 8, 2, 6, 1, 1, 4, 8, 0, 5, 2, 7, 9, 4, 6, 0, 9, 3, 5, 7, 6, 4, 5, 2, 8, 0, 2, 2, 5, 0, 8, 9, 0, 2, 3, 3, 5, 9, 2, 3, 1, 7, 0, 6, 4, 4, 5, 4, 2, 7, 4, 1, 8, 8, 5, 9, 3, 4, 8, 8, 2, 2, 1, 4, 2, 3, 9, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2020

Keywords

Comments

This constant is transcendental.

Examples

			1/(2^1*1!) + 1/(2^3*3!) + 1/(2^5*5!) + ... = 0.52109530549374736162242...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sinh[1/2], 10, 110] [[1]]
  • PARI
    sinh(1/2) \\ Michel Marcus, Apr 25 2020

Formula

Equals sinh(1/2).
Equals (1/2) * Product_{k>=1} 1 + 1/(2*k*Pi)^2. - Amiram Eldar, Jul 16 2020

A078980 Numerators of continued fraction convergents to sinh(1).

Original entry on oeis.org

1, 6, 7, 20, 47, 114, 161, 436, 3213, 16501, 19714, 36215, 55929, 148073, 352075, 6837498, 7189573, 21216644, 28406217, 220060163, 248466380, 468526543, 4465205267, 4933731810, 19266400697, 24200132507, 43466533204, 111133198915
Offset: 0

Views

Author

Benoit Cloitre, Dec 20 2002

Keywords

Crossrefs

Cf. A068139 (continued fraction), A073742 (decimal expansion), A078981 (denominators).

Programs

  • Mathematica
    Numerator[Convergents[Sinh[1],30]] (* Harvey P. Dale, May 09 2013 *)
  • PARI
    a(n)=component(component(contfracpnqn(contfrac(sinh(1),n+1)),1),1)

Extensions

Offset changed by Andrew Howroyd, Aug 05 2024

A078981 Denominators of continued fraction convergents to sinh(1).

Original entry on oeis.org

1, 5, 6, 17, 40, 97, 137, 371, 2734, 14041, 16775, 30816, 47591, 125998, 299587, 5818151, 6117738, 18053627, 24171365, 187253182, 211424547, 398677729, 3799524108, 4198201837, 16394129619, 20592331456, 36986461075, 94565253606
Offset: 0

Views

Author

Benoit Cloitre, Dec 20 2002

Keywords

Crossrefs

Cf. A068139 (continued fraction), A073742 (decimal expansion), A078980 (numerators).

Programs

  • Mathematica
    Convergents[Sinh[1],30]//Denominator (* Harvey P. Dale, Apr 17 2022 *)
  • PARI
    a(n)=component(component(contfracpnqn(contfrac(sinh(1),n+1)),1),2)

Extensions

Offset changed by Andrew Howroyd, Aug 05 2024

A091032 Second column (k=3) of array A090438 ((4,2)-Stirling2) divided by 8.

Original entry on oeis.org

1, 60, 5040, 604800, 99792000, 21794572800, 6102480384000, 2134124568576000, 912338253066240000, 468333636574003200000, 284372184127734743040000, 201645730563302817792000000, 165147853331345007771648000000
Offset: 2

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A002674 (first column of A090438), A091033 (third column), A090438.

Programs

  • Mathematica
    a[n_] := (n - 1)*(2*n)!/4!; Array[a, 13, 2] (* Amiram Eldar, Nov 03 2022 *)
  • PARI
    a(n) = (n-1)*(2*n)!/4!; \\ Amiram Eldar, Nov 03 2022

Formula

a(n) = A090438(n, 3)/8 = (n-1)*(2*n)!/4!
E.g.f.: (-3*hypergeom([1/2, 1], [], 4*x) + hypergeom([1, 3/2], [], 4*x) + 2)/(8*3!) (cf. A090438).
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=2} 1/a(n) = 60 - 24*Gamma - 24*cosh(1) + 24*CoshIntegral(1) - 24*sinh(1).
Sum_{n>=2} (-1)^n/a(n) = -12 + 24*gamma - 24*cos(1) - 24*CosIntegral(1) + 24*SinIntegral(1). (End)
a(n+1) = Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+2) * binomial(2*n, n-j) (Campbell, Eq. 17). - Peter Bala, Mar 30 2025

A091033 Third column (k=4) of array A090438 ((4,2)-Stirling2).

Original entry on oeis.org

1, 180, 25200, 4233600, 898128000, 239740300800, 79332244992000, 32011868528640000, 15509750302126080000, 8898339094906060800000, 5971815866682429603840000, 4637851802955964809216000000
Offset: 2

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A091032 (second column of A090438 divided by 8), A091034 (fourth column divided by 24), A000384, A090438.

Programs

  • Mathematica
    a[n_] := (n-1)*(2*n-3)*(2*n)!/4!; Array[a, 12, 2] (* Amiram Eldar, Nov 03 2022 *)
  • PARI
    a(n) = (n-1)*(2*n-3)*(2*n)!/4!; \\ Amiram Eldar, Nov 03 2022

Formula

a(n) = A090438(n, 4), n>=2.
a(n) = (n-1)*(2*n-3)*(2*n)!/4! = binomial(2*(n-1), 2)*(2*n)!/4! = A000384(n-1)*(2*n)!/4!, n>=2.
E.g.f.: (6*hypergeom([1/2, 1], [], 4*x) - 4*hypergeom([1, 3/2], [], 4*x) + hypergeom([3/2, 2], [], 4*x) -3)/4! (cf. A090438).
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=2} 1/a(n) = -20 + 24*Gamma - 16*CoshIntegral(1) + 16*sinh(1) + 8*SinhIntegral(1).
Sum_{n>=2} (-1)^n/a(n) = 4 - 24*gamma + 16*cos(1) + 24*CosIntegral(1) - 16*sin(1) + 8*SinIntegral(1). (End)

A091034 Fourth column (k=5) of array A090438 ((4,2)-Stirling2) divided by 24.

Original entry on oeis.org

1, 280, 70560, 19958400, 6659452800, 2644408166400, 1244905998336000, 689322235650048000, 444916954745303040000, 331767548149023866880000, 283424276847308960563200000, 275246422218908346286080000000
Offset: 3

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A091033 (third column of A090438), A091035 (fifth column), A090438.

Programs

  • Mathematica
    a[n_] := (n - 1)*(n - 2)*(2*n - 3)*(2*n)!/(5!*(3!)^2); Array[a, 12, 3] (* Amiram Eldar, Nov 03 2022 *)
  • PARI
    a(n) = (n-1)*(n-2)*(2*n-3)*(2*n)!/(5!*(3!)^2); \\ Amiram Eldar, Nov 03 2022

Formula

a(n) = A090438(n, 5)/24, n>=3.
a(n) = (n-1)*(n-2)*(2*n-3)*(2*n)!/(5!*(3!)^2), n>=3.
E.g.f.: (Sum_{p=2..5} (((-1)^(p+1))*binomial(5, p)*hypergeom([(p-1)/2, p/2], [], 4*x)) + 4)/(5!*4!) (cf. A090438).
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=3} 1/a(n) = 2010 - 4680*Gamma + 1800*cosh(1) + 4680*CoshIntegral(1) - 2520*sinh(1) - 2880*SinhIntegral(1).
Sum_{n>=3} (-1)^(n+1)/a(n) = -2010 - 3960*gamma + 3240*cos(1) + 3960*CosIntegral(1) - 1800*sin(1) + 2880*SinIntegral(1). (End)

A091035 Fifth column (k=6) of array A090438 ((4,2)-Stirling2).

Original entry on oeis.org

1, 840, 352800, 139708800, 59935075200, 29088489830400, 16183777978368000, 10339833534750720000, 7563588230670151680000, 6303583414831453470720000, 5951909813793488171827200000, 6330667711034891964579840000000
Offset: 3

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Crossrefs

Cf. A091034 (fourth column of A090438 divided by 24), A091036 (sixth column divided by 48), A053134, A090438.

Programs

  • Mathematica
    Table[Binomial[2n-2,4] (2n)!/6!,{n,3,20}] (* Harvey P. Dale, Jun 07 2021 *)
  • PARI
    a(n) = binomial(2*n-2, 4)*(2*n)!/6!; \\ Amiram Eldar, Nov 03 2022

Formula

a(n) = A090438(n, 6), n>=3.
a(n) = binomial(2*n-2, 4)*(2*n)!/6! = A053134(n-3)*(2*n)!/6!, n>=3.
E.g.f.: (Sum_{p=2..6} (((-1)^p)*binomial(6, p)*hypergeom([(p-1)/2, p/2], [], 4*x)) - 5)/6! (cf. A090438).
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=3} 1/a(n) = -594 + 1800*Gamma - 1008*cosh(1) - 1800*CoshIntegral(1) + 912*sinh(1) + 1464*SinhIntegral(1).
Sum_{n>=3} (-1)^(n+1)/a(n) = 1554 + 1080*gamma - 1248*cos(1) - 1080*CosIntegral(1) + 240*sin(1) - 1416*SinIntegral(1). (End)
Previous Showing 21-30 of 41 results. Next