A074584 Esanacci (hexanacci or "6-anacci") numbers.
6, 1, 3, 7, 15, 31, 63, 120, 239, 475, 943, 1871, 3711, 7359, 14598, 28957, 57439, 113935, 225999, 448287, 889215, 1763832, 3498707, 6939975, 13766015, 27306031, 54163775, 107438335, 213112838, 422726969, 838513963, 1663261911, 3299217791, 6544271807
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n=0..200
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Mario Catalani, Polymatrix and Generalized Polynacci Numbers, arXiv:math/0210201 [math.CO], 2002.
- Spiros D. Dafnis, Andreas N. Philippou, and Ioannis E. Livieris, An Alternating Sum of Fibonacci and Lucas Numbers of Order k, Mathematics (2020) Vol. 9, 1487.
- Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4.
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6) )); // G. C. Greubel, Apr 22 2019 -
Mathematica
CoefficientList[Series[(6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6), {x, 0, 40}], x] LinearRecurrence[{1,1,1,1,1,1},{6,1,3,7,15,31},40] (* Harvey P. Dale, Nov 08 2011 *)
-
PARI
polsym(polrecip(1-x-x^2-x^3-x^4-x^5-x^6), 40) \\ G. C. Greubel, Apr 22 2019
-
Python
def aupton(nn): alst = [6, 1, 3, 7, 15, 31] for n in range(6, nn+1): alst.append(sum(alst[n-6:n])) return alst[:nn+1] print(aupton(33)) # Michael S. Branicky, Jun 01 2021
-
Sage
((6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019
Formula
a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6), a(0)=6, a(1)=1, a(2)=3, a(3)=7, a(4)=15, a(5)=31.
G.f.: (6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6).
a(n) = 2*a(n-1) - a(n-7) for n >= 7. - Vincenzo Librandi, Dec 20 2010
Comments