cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A123126 Absolute value of coefficient of X^2 in the characteristic polynomial of the n-th power of the matrix M = {{1,1,1,1,1}, {1,0,0,0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}}.

Original entry on oeis.org

1, 1, 4, 1, 31, 22, 1, 33, 4, 141, 199, 10, 209, 113, 604, 1473, 375, 1174, 1521, 2721, 9580, 5501, 6671, 14346, 15681, 57409, 56596, 44577, 112463, 119382, 333313, 480641, 360628, 800973, 1007191, 1988362, 3628369, 3160689, 5525420, 8309793
Offset: 1

Views

Author

Artur Jasinski, Sep 30 2006

Keywords

Comments

Let P(x) = X^5 - X^4 - X^3 - X^2 - X - 1 and X1, X2, X3, X4, X5 its roots. Then a(n) = (X1*X2*X3)^n + (X1*X2*X4)^n + (X1*X2*X5)^n + ... + (X3*X4*X5)^n.

Examples

			a(5) = 31 because the characteristic polynomial of M^5 is X^5 - 31*X^4 + 49*X^3 - 31*X^2 + 9*X - 1.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1 +3*x^2 -4*x^3 +30*x^4 -18*x^5 -21*x^6 -16*x^7 -9*x^8 -10*x^9)/(1 -x -x^3 +x^4 -6*x^5 +3*x^6 +3*x^7 +2*x^8 +x^9 +x^10) )); // G. C. Greubel, Aug 03 2021
    
  • Maple
    with(linalg): M[1]:=matrix(5,5,[1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0]): for n from 2 to 45 do M[n]:=multiply(M[n-1],M[1]) od: seq(-coeff(charpoly(M[n],x),x,2),n=1..45); # Emeric Deutsch
  • Mathematica
    f[n_]:= CoefficientList[CharacteristicPolynomial[MatrixPower[{{1,1,1,1,1}, {1,0,0, 0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}}, n], x], x][[3]]; Array[f, 40] (* Robert G. Wilson v *)
  • Sage
    def A123126_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1 +3*x^2 -4*x^3 +30*x^4 -18*x^5 -21*x^6 -16*x^7 -9*x^8 -10*x^9)/(1 -x -x^3 +x^4 -6*x^5 +3*x^6 +3*x^7 +2*x^8 +x^9 +x^10) ).list()
    a=A123126_list(40); a[1:] # G. C. Greubel, Aug 03 2021

Formula

G.f.: x*(1 +3*x^2 -4*x^3 +30*x^4 -18*x^5 -21*x^6 -16*x^7 -9*x^8 -10*x^9)/(1 -x -x^3 +x^4 -6*x^5 +3*x^6 +3*x^7 +2*x^8 +x^9 +x^10). - Colin Barker, May 16 2013

Extensions

Edited by N. J. A. Sloane, Oct 24 2006
More terms from Emeric Deutsch and Robert G. Wilson v, Oct 24 2006

A123127 Coefficient of X^3 in the characteristic polynomial of the n-th power of the matrix M = {{1,1,1,1,1}, {1,0,0,0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}}.

Original entry on oeis.org

-1, -3, -4, 1, 49, -42, -57, -31, 140, 497, -815, -758, 311, 3021, 3796, -13759, -7039, 16086, 45295, 3681, -204684, -10431, 365377, 507914, -618001, -2642435, 1427468, 6214881, 3341553, -16185322, -27959273, 42625665, 85186108, -23867663, -286766767, -193092086, 854985639, 900760205
Offset: 1

Views

Author

Artur Jasinski, Sep 30 2006

Keywords

Comments

Also sum of the successive powers of all combinations of products of two different roots of the quintic pentanacci polynomial X^5 -X^4 -X^3 -X^2 -X -1; namely (X1*X2)^n + (X1*X3)^n + (X1*X4)^n + (X1*X5)^n + (X2*X3)^n + (X2*X4)^n + (X2*X5)^n + (X3*X4)^n + (X3*X5)^n + (X4*X5)^n, where X1, X2, X3, X4, X5 are the roots. A074048 are the coefficients, with changed signs, of X^4 in the characteristic polynomials of the successive powers of the pentanacci matrix or (X1)^n + (X2)^n + (X3)^n + (X4)^n + (X5)^n.
Let g(y) = y^10 + y^9 + 2*y^8 + 3*y^7 + 3*y^6 - 6*y^5 + y^4 - y^3 - y + 1 and {y1,...,y10} be the roots of g(y). Then a(n) = y1^n + ... + y10^n. - Kai Wang, Nov 01 2020

Examples

			a(5) = 49 because the characteristic polynomial of fifth power of pentanacci matrix M^5 is X^5 -31*X^4 +49*X^3 -31*X^2 +9*X -1 in which coefficient of X^3 is 49.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( -x*(1+4*x+9*x^2 +12*x^3-30*x^4+6*x^5-7*x^6-9*x^8+10*x^9)/(1+x+2*x^2+3*x^3+3*x^4-6*x^5 +x^6 -x^7 -x^9+x^10) )); // G. C. Greubel, Aug 03 2021
    
  • Maple
    with(linalg): M[1]:=matrix(5,5,[1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0]): for n from 2 to 40 do M[n]:=multiply(M[n-1],M[1]) od: seq(coeff(charpoly(M[n],x),x,3),n=1..40); # Emeric Deutsch, Oct 24 2006
  • Mathematica
    f[n_]:= CoefficientList[CharacteristicPolynomial[MatrixPower[{{1,1,1,1,1}, {1,0,0, 0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}}, n], x], x][[4]]; Array[f, 36] (* Robert G. Wilson v, Oct 24 2006 *)
    LinearRecurrence[{-1,-2,-3,-3,6,-1,1,0,1,-1},{-1,-3,-4,1,49,-42,-57,-31,140,497},40] (* Harvey P. Dale, Apr 10 2023 *)
  • PARI
    g(y) = y^10 + y^9 + 2*y^8 + 3*y^7 + 3*y^6 - 6*y^5 + y^4 - y^3 - y + 1;
    my(v=polsym(g(y),33)); vector(#v-1,n,v[n+1]) \\ Joerg Arndt, Nov 02 2020
    
  • Sage
    def A123127_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( -x*(1+4*x+9*x^2+12*x^3-30*x^4+6*x^5-7*x^6-9*x^8+10*x^9)/(1+x+2*x^2 +3*x^3+3*x^4-6*x^5+x^6-x^7-x^9+x^10) ).list()
    a=A123127_list(40); a[1:] # G. C. Greubel, Aug 03 2021

Formula

G.f.: -x*(1 +4*x +9*x^2 +12*x^3 -30*x^4 +6*x^5 -7*x^6 -9*x^8 +10*x^9)/(1 +x +2*x^2 +3*x^3 +3*x^4 -6*x^5 +x^6 -x^7 -x^9 +x^10). - Colin Barker, May 16 2013

Extensions

Edited by N. J. A. Sloane, Oct 24 2006
More terms from Emeric Deutsch and Robert G. Wilson v, Oct 24 2006

A280303 Number of binary necklaces of length n with no subsequence 00000.

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 17, 31, 51, 91, 155, 287, 505, 930, 1695, 3129, 5759, 10724, 19913, 37239, 69643, 130745, 245715, 463099, 873705, 1651838, 3126707, 5927817, 11251031, 21382558, 40679233, 77475673, 147694719, 281822847, 538213671, 1028714071, 1967728553
Offset: 1

Views

Author

Petros Hadjicostas and Lingyun Zhang, Dec 31 2016

Keywords

Comments

a(n) is the number of cyclic sequences of length n consisting of zeros and ones that do not contain five consecutive zeros provided we consider as equivalent those sequences that are cyclic shifts of each other.

Examples

			a(5)=7 because we have seven binary cyclic sequences (necklaces) of length 5 that avoid five consecutive zeros: 00001, 00011, 00101, 00111, 01101, 01111, 11111.
		

Crossrefs

Formula

a(n) = (1/n) * Sum_{d divides n} totient(n/d) * A074048(d).
G.f.: Sum_{k>=1} (phi(k)/k) * log(1/(1-B(x^k))) where B(x) = x*(1+x+x^2+x^3+x^4).

Extensions

a(34) onwards from Andrew Howroyd, Jan 25 2024

A127208 Union of all n-step Lucas sequences, that is, all sequences s(1-n) = s(2-n) = ... = s(-1) = -1, s(0) = n and for k > 0, s(k) = s(k-1) + ... + s(k-n).

Original entry on oeis.org

1, 3, 4, 7, 11, 15, 18, 21, 26, 29, 31, 39, 47, 51, 57, 63, 71, 76, 99, 113, 120, 123, 127, 131, 191, 199, 223, 239, 241, 247, 255, 322, 367, 439, 443, 475, 493, 502, 511, 521, 708, 815, 843, 863, 943, 983, 1003, 1013, 1023, 1364, 1365, 1499, 1695, 1871, 1959
Offset: 1

Views

Author

T. D. Noe, Jan 09 2007

Keywords

Comments

Noe and Post conjectured that the only positive terms that are common to any two distinct n-step Lucas sequences are the Mersenne numbers (A001348) that begin each sequence and 7 and 11 (in 2- and 3-step) and 5071 (in 3- and 4-step). The intersection of this sequence with the union of all the n-step Fibonacci sequences (A124168) appears to consist of 4, 21, 29, the Mersenne numbers 2^n-1 for all n and the infinite set of Eulerian numbers in A127232.

Crossrefs

Cf. A227885.

Programs

  • Mathematica
    LucasSequence[n_,kMax_] := Module[{a,s,lst={}}, a=Join[Table[ -1,{n-1}],{n}]; While[s=Plus@@a; a=RotateLeft[a]; a[[n]]=s; s<=kMax, AppendTo[lst,s]]; lst]; nn=10; t={}; Do[t=Union[t,LucasSequence[n,2^(nn+1)]], {n,2,nn}]; t

Formula

A127221 a(n) = 2^n*pentanacci(n) or (2^n)*A023424(n-1).

Original entry on oeis.org

2, 12, 56, 240, 992, 3648, 14464, 57088, 224768, 883712, 3471360, 13651968, 53682176, 211075072, 829915136, 3263102976, 12830244864, 50447253504, 198353354752, 779904614400, 3066503888896, 12057176965120, 47407572189184, 186401664532480, 732912043425792
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[2, 12, 56, 240, 992]; [n le 5 select I[n] else 2*Self(n-1) + 4*Self(n-2) + 8*Self(n-3) + 16*Self(n-4) + 32*Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Mathematica
    Table[Tr[MatrixPower[2*{{1, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{2, 4, 8, 16, 32}, {2, 12, 56, 240, 992}, 50] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec(-2*x*(1 +4*x +12*x^2 +32*x^3 +80*x^4)/(-1 +2*x +4*x^2 +8*x^3 +16*x^4 +32*x^5)) \\ G. C. Greubel, Dec 19 2017
    

Formula

a(n) = Trace of matrix [({2,2,2,2,2},{2,0,0,0,0},{0,2,0,0,0},{0,0,2,0,0},{0,0,0,2,0})^n].
a(n) = 2^n * Trace of matrix [({1,1,1,1,1},{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0})^n].
G.f.: -2*x*(1 +4*x +12*x^2 +32*x^3 +80*x^4)/(-1 +2*x +4*x^2 +8*x^3 +16*x^4 +32*x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; corrected by R. J. Mathar, Sep 16 2009
a(n) = 2*a(n-1)+4*a(n-2)+8*a(n-3)+16*a(n-4)+32*a(n-5). - Colin Barker, Sep 02 2013

Extensions

Definition corrected by R. J. Mathar, Sep 17 2009
More terms from Colin Barker, Sep 02 2013

A127222 a(n) = 3^n*pentanacci(n) or (3^n)*A023424(n-1).

Original entry on oeis.org

3, 27, 189, 1215, 7533, 41553, 247131, 1463103, 8640837, 50959287, 300264165, 1771292853, 10447598619, 61618989627, 363414767589, 2143339285311, 12641143135581, 74555586323649, 439717218548643, 2593383067853775, 15295369041550269, 90209719910309895
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[3, 27, 189, 1215, 7533]; [n le 5 select I[n] else 3*Self(n-1) + 9*Self(n-2) + 27*Self(n-3) + 81*Self(n-4) + 243*Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Mathematica
    Table[Tr[MatrixPower[3*{{1, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{3, 9, 27, 81, 243}, {3, 27, 189, 1215, 7533}, 50] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec(-3*x*(1 +6*x +27*x^2 +108*x^3 +405*x^4)/(-1 +3*x +9*x^2 +27*x^3 +81*x^4 +243*x^5)) \\ G. C. Greubel, Dec 19 2017
    

Formula

a(n) = Trace of matrix [({3,3,3,3,3},{3,0,0,0,0},{0,3,0,0,0},{0,0,3,0,0},{0,0,0,3,0})^n].
a(n) = 3^n * Trace of matrix [({1,1,1,1,1},{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0})^n].
G.f.: -3*x*(1 +6*x +27*x^2 +108*x^3 +405*x^4)/(-1 +3*x +9*x^2 +27*x^3 +81*x^4 +243*x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009
a(n) = 3*a(n-1)+9*a(n-2)+27*a(n-3)+81*a(n-4)+243*a(n-5). - Colin Barker, Sep 02 2013

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009
Definition corrected by R. J. Mathar, Sep 17 2009
More terms from Colin Barker, Sep 02 2013

A247505 Generalized Lucas numbers: square array A(n,k) read by antidiagonals, A(n,k)=(-1)^(k+1)*k*[x^k](-log((1+sum_{j=1..n}(-1)^(j+1)*x^j)^(-1))), (n>=0, k>=0).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 3, 1, 0, 0, 1, 3, 4, 1, 0, 0, 1, 3, 7, 7, 1, 0, 0, 1, 3, 7, 11, 11, 1, 0, 0, 1, 3, 7, 15, 21, 18, 1, 0, 0, 1, 3, 7, 15, 26, 39, 29, 1, 0, 0, 1, 3, 7, 15, 31, 51, 71, 47, 1, 0, 0, 1, 3, 7, 15, 31, 57, 99, 131, 76, 1, 0
Offset: 0

Views

Author

Peter Luschny, Nov 02 2014

Keywords

Examples

			n\k[0][1][2][3] [4] [5] [6]  [7]  [8]  [9]  [10]  [11]  [12]
[0] 0, 0, 0, 0,  0,  0,  0,   0,   0,   0,    0,    0,    0
[1] 0, 1, 1, 1,  1,  1,  1,   1,   1,   1,    1,    1,    1
[2] 0, 1, 3, 4,  7, 11, 18,  29,  47,  76,  123,  199,  322 [A000032]
[3] 0, 1, 3, 7, 11, 21, 39,  71, 131, 241,  443,  815, 1499 [A001644]
[4] 0, 1, 3, 7, 15, 26, 51,  99, 191, 367,  708, 1365, 2631 [A073817]
[5] 0, 1, 3, 7, 15, 31, 57, 113, 223, 439,  863, 1695, 3333 [A074048]
[6] 0, 1, 3, 7, 15, 31, 63, 120, 239, 475,  943, 1871, 3711 [A074584]
[7] 0, 1, 3, 7, 15, 31, 63, 127, 247, 493,  983, 1959, 3903 [A104621]
[8] 0, 1, 3, 7, 15, 31, 63, 127, 255, 502, 1003, 2003, 3999 [A105754]
[.] .  .  .  .   .   .   .    .    .    .     .     .     .
oo] 0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095 [A000225]
'
As a triangular array, starts:
0,
0, 0,
0, 1, 0,
0, 1, 1, 0,
0, 1, 3, 1, 0,
0, 1, 3, 4, 1, 0,
0, 1, 3, 7, 7, 1,  0,
0, 1, 3, 7, 11, 11, 1, 0,
0, 1, 3, 7, 15, 21, 18, 1, 0,
0, 1, 3, 7, 15, 26, 39, 29, 1, 0,
		

Crossrefs

Programs

  • Maple
    A := proc(n, k) f := -log((1+add((-1)^(j+1)*x^j, j=1..n))^(-1));
    (-1)^(k+1)*k*coeff(series(f,x,k+2),x,k) end:
    seq(print(seq(A(n,k), k=0..12)), n=0..8);
  • Mathematica
    A[n_, k_] := Module[{f, x}, f = -Log[(1+Sum[(-1)^(j+1) x^j, {j, 1, n}] )^(-1)]; (-1)^(k+1) k SeriesCoefficient[f, {x, 0, k}]];
    Table[A[n-k, k], {n, 0, 12}, {k, 0, n}] (* Jean-François Alcover, Jun 28 2019, from Maple *)

A251653 5-step Fibonacci sequence starting with 0,0,1,0,0.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 4, 7, 14, 28, 55, 108, 212, 417, 820, 1612, 3169, 6230, 12248, 24079, 47338, 93064, 182959, 359688, 707128, 1390177, 2733016, 5372968, 10562977, 20766266, 40825404, 80260631, 157788246, 310203524, 609844071, 1198921876, 2357018348, 4633776065, 9109763884, 17909324244, 35208804417
Offset: 0

Views

Author

Arie Bos, Dec 06 2014

Keywords

Comments

Doubling the entries > 1 as 1, 2, 2, 4, 4, 7, 7, 14, 14, 28, 28, 55, 55,... (offset 0) gives Nyblom's palindromic binary strings having no 5-runs of 1's. - R. J. Mathar, Mar 28 2025

Crossrefs

Programs

  • J
    (see www.jsoftware.com) First construct the generating matrix
    1  1  1  1  1
    1  2  2  2  2
    2  3  4  4  4
    4  6  7  8  8
    8 12 14 15 16
    Given that matrix one can produce the first 5*200 numbers by
    , M(+/ . *)^:(i.250) 0 0 1 0 0x
  • Mathematica
    LinearRecurrence[{1, 1, 1, 1, 1}, {0, 0, 1, 0, 0}, 100] (* G. C. Greubel, May 27 2016 *)

Formula

a(n+5) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4).
G.f.: x^2*(x^2 + x - 1)/(x^5 + x^4 + x^3 + x^2 + x - 1). - Chai Wah Wu, May 27 2016

A106284 Primes p such that the polynomial x^5-x^4-x^3-x^2-x-1 mod p has no zeros.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 31, 37, 41, 53, 71, 79, 83, 107, 151, 157, 199, 229, 233, 239, 241, 257, 263, 277, 281, 311, 317, 331, 337, 379, 389, 409, 431, 433, 463, 467, 521, 523, 541, 547, 557, 563, 571, 577, 607, 631, 659, 677, 727, 769, 787, 809, 827, 839, 853
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 5-step sequences, A001591 and A074048.

Crossrefs

Cf. A106278 (number of distinct zeros of x^5-x^4-x^3-x^2-x-1 mod prime(n)), A106298, A106304 (period of Lucas and Fibonacci 5-step sequence mod prime(n)), A003631 (primes p such that x^2-x-1 is irreducible mod p).

Programs

  • Maple
    P:= x^5-x^4-x^3-x^2-x-1:
    select(p -> [msolve(P,p)] = [], [seq(ithprime(i),i=1..10000)]); # Robert Israel, Mar 13 2024
  • Mathematica
    t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^5-x^4-x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 200}];Prime[Flatten[Position[t, 0]]]
  • Python
    from itertools import islice
    from sympy import Poly, nextprime
    from sympy.abc import x
    def A106284_gen(): # generator of terms
        from sympy.abc import x
        p = 2
        while True:
            if len(Poly(x*(x*(x*(x*(x-1)-1)-1)-1)-1, x, modulus=p).ground_roots())==0:
                yield p
            p = nextprime(p)
    A106284_list = list(islice(A106284_gen(),20)) # Chai Wah Wu, Mar 14 2024

Extensions

Name corrected by Robert Israel, Mar 13 2024

A125129 Partial sums of diagonals of array of k-step Lucas numbers as in A125127, read by antidiagonals.

Original entry on oeis.org

1, 1, 4, 1, 8, 11, 1, 12, 19, 26, 1, 19, 33, 45, 57, 1, 30, 58, 84, 102, 120, 1, 48, 101, 157, 197, 222, 247, 1, 77, 179, 292, 380, 436, 469, 502, 1, 124, 318, 546, 731, 855, 929, 971, 1013, 1, 200, 567, 1026, 1409, 1674, 1838, 1932, 1984, 2036
Offset: 1

Views

Author

Jonathan Vos Post, Nov 23 2006

Keywords

Comments

Array of partial sums of diagonals of L(k,n) begins: 0.|.1...4..11...26...57..120..247..502.1013.2036.
1.|.1...8..19...45..102..222..469..971.1984.
2.|.1..12..33...84..197..436..929.1932.
3.|.1..19..58..157..380..855.1838.
4.|.1..30.101..292..731.1674.
5.|.1..48.179..546.1409.
6.|.1..77.318.1026.
7.|.1.124.567.
8.|.1.200.
9.|.1.

Examples

			Row 1 of the derived array is the partial sum of the diagonal above the main diagonal of array of k-step Lucas numbers as in A125127, hence the partial sums of: 1, 7, 11, 26, 57, 120, 247, 502, 103, ... are 1 = 1; 8 = 1 + 7; 19 = 1 + 7 + 11; 45 = 1 + 7 + 11 + 26; and so forth.
		

Crossrefs

Formula

Row 0 = SUM[i=1..n]L(i,i) = A127128 = partial sum of main diagonal of array of A125127. Row 1 = SUM[i=1..n]L(i,i+1) = partial sum of diagonal above main diagonal of array of A125127. Row 2 = SUM[i=1..n]L(i,i+2) = partial sum of diagonal 2 above main diagonal of array of A125127. .. Row m = SUM[i=1..n]L(i,i+m) = partial sum of diagonal 2 above main diagonal of array of A125127.
Previous Showing 21-30 of 31 results. Next