cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A122372 Dimension of 8-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 8 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).

Original entry on oeis.org

1, 7, 55, 438, 3498, 27962, 223604, 1788406, 14305102, 114429193, 915366442, 7322521512, 58577537621, 468602617723, 3748697751384, 29988696932490, 239903055854075, 1919175464438065, 15353030007717639, 122821355074655309
Offset: 0

Views

Author

Mike Zabrocki, Aug 30 2006

Keywords

Examples

			A122371 a(1) = 7 because x1-x2, x2-x3, x3-x4, x4-x5, x5-x6, x6-x7, x7-x8 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4+d_x5+d_x6+d_x7.
		

Crossrefs

Programs

  • Maple
    coeffs(convert(series((1-21*q+175*q^2-735*q^3+1624*q^4-1764*q^5+720*q^6)/ (1-28*q+316*q^2-1845*q^3+5925*q^4-10190*q^5+8249*q^6-2119*q^7), q,20),`+`)-O(q^20),q);
  • Mathematica
    n = 8; gf = Sum[n!/(n-d)! q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}]/ Sum[q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}] + O[q]^20;
    CoefficientList[gf, q] (* Jean-François Alcover, Dec 03 2018 *)

Formula

G.f.: (1-21*q+175*q^2-735*q^3+1624*q^4-1764*q^5+720*q^6)/ (1-28*q+316*q^2-1845*q^3+5925*q^4-10190*q^5+8249*q^6-2119*q^7) more generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n) / sum( q^d/prod((1-r*q), r=1..d), d=0..n) where n=8.

A124293 Number of free generators of degree n of symmetric polynomials in 5-noncommuting variables.

Original entry on oeis.org

1, 1, 2, 6, 22, 91, 406, 1896, 9093, 44279, 217500, 1073657, 5314870, 26352107, 130778039, 649352929, 3225196431, 16021584848, 79597062632, 395469296912, 1964908443531, 9762920818182, 48508934285620, 241027326818991, 1197601448443963, 5950578465799856
Offset: 1

Views

Author

Mike Zabrocki, Oct 24 2006

Keywords

Comments

Also the number of non-splitable set partitions (see Bergeron et al. reference) of length <=5

Crossrefs

Programs

  • Magma
    I:=[1,1,2,6]; [n le 4 select I[n] else 10*Self(n-1)-32*Self(n-2)+37*Self(n-3)-11*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jan 09 2016
  • Maple
    a:= n-> (Matrix([[6,2,1,1]]). Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [10, -32, 37, -11][i] else 0 fi)^(n-1))[1,4]: seq(a(n), n=1..30); # Alois P. Heinz, Sep 05 2008
  • Mathematica
    LinearRecurrence[{10, -32, 37, -11}, {1, 1, 2, 6}, 30] (* Jean-François Alcover, Jan 08 2016 *)

Formula

O.g.f. (1-9q+24q^2-19q^3)/(1-10q+32q^2-37q^3+11q^4) = (1 - 1/(sum_{k=0}^5 q^k/(prod_{i=1}^k (1-i*q))))/q a(n) = add( A055105(n,k), k=1..5) = add(A055106(n,k),k=1..4)

A086329 Triangle T(n,k) read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 9, 11, 1, 0, 1, 16, 48, 26, 1, 0, 1, 25, 140, 202, 57, 1, 0, 1, 36, 325, 916, 747, 120, 1, 0, 1, 49, 651, 3045, 5071, 2559, 247, 1, 0, 1, 64, 1176, 8260, 23480, 25300, 8362, 502, 1, 0, 1, 81, 1968, 19404, 84456, 159736, 117962, 26520, 1013, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 30 2003, Jun 12 2007

Keywords

Comments

See A087903 for another version (transposed). - Philippe Deléham, Jun 13 2004

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  4,    1;
  0, 1,  9,   11,    1;
  0, 1, 16,   48,   26,     1;
  0, 1, 25,  140,  202,    57,     1;
  0, 1, 36,  325,  916,   747,   120,    1;
  0, 1, 49,  651, 3045,  5071,  2559,  247,   1;
  0, 1, 64, 1176, 8260, 23480, 25300, 8362, 502, 1; ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[n==0, 1, StirlingS2[n, k] + Sum[(k-m-1)*T[n-j-1, k- m]*StirlingS2[j, m], {m,0,k-1}, {j,0,n-2}]];
    A086329[n_, k_]:= T[n,n-k+1];
    Table[A086329[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 21 2022 *)
  • SageMath
    @CachedFunction
    def T(n,k): # T=A087903
        if (n==0): return 1
        else: return stirling_number2(n, k) + sum( sum( (k-m-1)*T(n-j-1, k-m)*stirling_number2(j, m) for m in (0..k-1) ) for j in (0..n-2) )
    def A086329(n,k): return T(n, n-k+1)
    flatten([[A086329(n, k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Jun 21 2022

Formula

Sum_{k=0..n} T(n, k) = A086211(n, 0).
T(n, 1) = 1, n > 0.
T(n, 2) = (n-1)^2, n > 0.
T(k+1, k) = 2^(k+1) - k - 2 = A000295(k+1).
Sum_{k=0..n} T(n, k) = A074664(n+1). - Philippe Deléham, Jun 13 2004
Sum_{k=0..n} T(n,k)*2^k = A171151(n). - Philippe Deléham, Dec 05 2009
T(n, k) = A087903(n, n-k+1). - G. C. Greubel, Jun 21 2022

A095989 INVERTi transform applied to the ordered Bell numbers.

Original entry on oeis.org

1, 2, 8, 48, 368, 3376, 35824, 430512, 5773936, 85482032, 1384936688, 24380214960, 463522810736, 9468048895792, 206831329017328, 4812581925690288, 118843801816575088, 3104590192664327216, 85544737118902122224, 2479681575659312797872, 75434373300016828382576
Offset: 1

Views

Author

Mike Zabrocki, Jul 18 2004

Keywords

Comments

A set composition of n is an ordered sequence [S_1, S_2, ..., S_k] where S_i subset of [n] all disjoint and the union of all S_i is [n] (see A000670). A set composition is atomic if S_1 union ... union S_j does not equal [r] for any r < n and j < k. a(n) is the number of atomic set compositions.
A preference function of n is a word of length n where all the numbers 1 through k occur at least once for some k <= n (see A000670). A preference function is atomic if no strict leading subword contains the only occurrences in the word of the letters 1 through j < k. a(n) is the number of atomic preference functions.

Examples

			Atomic set compositions a(1)=1: [{1}]; a(2)=2: [{12}], [{2},{1}]; a(3)=8: [{123}], [{2},{13}], [{3}, {12}], [{23}, {1}], [{13},{2}], [{2},{3},{1}], [{3},{1},{2}], [{3},{2},{1}].
Atomic preference functions a(1) = 1: 1; a(2)=2: 11, 21; a(3)=8: 111, 212, 221, 211, 121, 312, 231, 321.
		

Crossrefs

Programs

  • Maple
    A000670 := proc(n) option remember; local k; if n <=1 then 1 else add(binomial(n,k)*A000670(n-k),k=1..n); fi; end: add(A000670(k)*x^k,k=0..20): series(1-1/%,x,21): [seq(coeff(%,x,i),i=1..20)];
  • Mathematica
    max = 20; Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; s = 1 - 1/Sum[ Fubini[k, 1] q^k, {k, 0, max}] + O[q]^max; CoefficientList[s/q, q] (* Jean-François Alcover, Mar 31 2016 *)

Formula

G.f.: 1 - 1/Sum_{k>=0} A000670(k)*q^k.
G.f.: x/(1-2x/(1-2x/(1-4x/(1-3x/(1-6x/(1-4x/(1-8x/(1-5x/(1-...(continued fraction). - Philippe Deléham, Nov 22 2011
G.f.: (1-T(0))/x, where T(k) = 1 - x*(k+1)/(1 - 2*x*(k+1)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 29 2013
Let A(x) be the g.f. A095989, B(x) the g.f. A000670, then A(x) = (1 - 1/B(x))/x. - Sergei N. Gladkovskii, Nov 29 2013
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Oct 09 2019

A098742 Number of indecomposable set partitions of [1..n] without singletons.

Original entry on oeis.org

0, 0, 1, 1, 3, 9, 33, 135, 609, 2985, 15747, 88761, 531561, 3366567, 22462017, 157363329, 1154257683, 8841865833, 70573741857, 585753925047, 5046128460801, 45044554041897, 416005748766771, 3969321053484921, 39077616720410409
Offset: 0

Views

Author

Don Knuth, Oct 01 2004

Keywords

Comments

After a(3) = 1, always divisible by 3. a(n) is 3 times a prime (A001748) when n = 5, 6, 11, 14, 15, 16, 19. - Jonathan Vos Post, Jun 22 2008

Examples

			a(5)=9 because of the set partitions 135|24, 134|25, 125|34, 145|23, 15|234, 13|245, 124|35, 12345, 14|235. [Puttenham missed the last of these.]
		

References

  • D. E. Knuth, TAOCP, Vol. 4, Section 7.2.1.7, Problem 26.
  • George Puttenham, The Arte of English Poesie (1589), page 72, can be said to have stated the problem; but he omitted one case for n=5 and 22 cases for n=6, so he must have had other constraints in mind!

Crossrefs

Programs

  • Maple
    F:= proc(n) option remember; convert(series(1 -1/add(coeff(series(exp(exp(x)-1), x,n+1), x,j)*j!*x^j, j=0..n), x,n+1), polynom) end: a:= n-> coeff(series(x*F(n)/(1+x-F(n)), x,n+1), x,n): seq(a(n), n=0..24); # Alois P. Heinz, Sep 05 2008
  • Mathematica
    f[n_] := f[n] = Normal[ Series[ 1-1/Sum[ SeriesCoefficient[ Series[ Exp[Exp[x] - 1], {x, 0, n + 1}], {x, 0, j}]*j!*x^j, {j, 0, n}], {x, 0, n + 1}]]; a[0] = 0; a[n_] := SeriesCoefficient[ Series[ x*(f[n]/(1 + x - f[n])), {x, 0, n + 1}], {x, 0, n}]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, translated from Maple *)
  • Sage
    def A098742_list(dim):
        T = matrix(ZZ,dim,dim)
        for n in range(dim): T[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                T[n,k] = T[n-1,k-1]+(k+1)*T[n-1,k]+(k+2)*T[n-1,k+1]
        return [0,0]+list(T.column(0))
    A098742_list(23) # - Peter Luschny, Sep 20 2012

Formula

If f(z) is the generating function for A074664, then a(z)=zf(z)/(1+z-f(z)).
Also, if g(z) is the generating function for A000296, then a(z) = 1-1/g(z).
O.g.f.: x^2/(1-x-2*x^2/(1-2*x-3*x^2/(1-3*x-4*x^2/(1-... -n*x-(n+1)*x^2/(1- ...)))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
From Sergei N. Gladkovskii, Sep 20 2012, Nov 04 2012, Feb 04 2013, Feb 23 2013, Apr 18 2013, May 12 2013: (Start) Continued fractions:
G.f.: -x + 2*x/E(0) where E(k)= 1 + 1/(1 + 2*x/(1 - 2*(k+2)*x/E(k+1))).
G.f.: 1 - x*U(0,1/x) where U(k,x)= x - k - (k+1)/U(k+1,x).
G.f.: (1+x)*x/G(0) - x where G(k) = 1 + x - x*(k+1)/(1 - x/G(k+1)).
G.f.: x/Q(0) - x where Q(k)= 1 + x/(x*k-x-1)/Q(k+1).
G.f.: 1 - Q(0) where Q(k)= 1 + x - x/(1 - x*(k+1)/Q(k+1)).
G.f.: 1-x-1/Q(0) where Q(k)= 1 + x/(1 - x - x*(k+1)/(x + 1/Q(k+1))). (End)

Extensions

More terms from Vladeta Jovovic, Oct 21 2004

A124294 Number of free generators of degree n of symmetric polynomials in 6-noncommuting variables.

Original entry on oeis.org

1, 1, 2, 6, 22, 92, 425, 2119, 11184, 61499, 347980, 2007643, 11734604, 69181578, 410179429, 2441025998, 14562284120, 87012222100, 520458020949, 3115224471290, 18654716694895, 111741999352603, 669466118302169
Offset: 1

Views

Author

Mike Zabrocki, Oct 24 2006

Keywords

Comments

Also the number of non-splitable set partitions (see Bergeron et al. reference) of length <=6

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{15, -81, 192, -189, 53}, {1, 1, 2, 6, 22}, 23] (* Jean-François Alcover, Dec 04 2018 *)

Formula

O.g.f.: (1-14*q+68*q^2-135*q^3+91*q^4)/(1-15*q+81*q^2-192*q^3+189*q^4-53*q^5) = (1 - 1/(sum_{k=0}^6 q^k/(prod_{i=1}^k (1-i*q))))/q a(n) = add( A055105(n,k), k=1..6) = add(A055106(n,k),k=1..5)

A124295 Number of free generators of degree n of symmetric polynomials in 7-noncommuting variables.

Original entry on oeis.org

1, 1, 2, 6, 22, 92, 426, 2145, 11589, 66425, 399682, 2500037, 16115347, 106266473, 712602272, 4837372576, 33128183406, 228308233098, 1580495251012, 10976092266889, 76398165848091, 532614662149795, 3717370694711130
Offset: 1

Views

Author

Mike Zabrocki, Oct 24 2006

Keywords

Comments

Also the number of non-splitable set partitions (see Bergeron et al. reference) of length <=7

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{21, -170, 669, -1314, 1157, -309}, {1, 1, 2, 6, 22, 92}, 23] (* Jean-François Alcover, Jan 27 2019 *)

Formula

O.g.f.: (1-20*q+151*q^2-535*q^3+881*q^4-531*q^5) / (1-21*q+170*q^2 -669*q^3 +1314*q^4-1157*q^5+309*q^6) = (1 - 1/(Sum_{k=0..7} q^k/(prod_{i=1}^k (1-i*q))))/q.
a(n) = add( A055105(n,k), k=1..7) = add(A055106(n,k), k=1..6).

A127743 Triangular array where T(n,k) is the number of set partitions of n with k atomic parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 22, 16, 9, 4, 1, 92, 60, 31, 14, 5, 1, 426, 252, 120, 52, 20, 6, 1, 2146, 1160, 510, 209, 80, 27, 7, 1, 11624, 5776, 2348, 904, 335, 116, 35, 8, 1, 67146, 30832, 11610, 4184, 1481, 507, 161, 44, 9, 1
Offset: 1

Views

Author

Alford Arnold, Feb 24 2007

Keywords

Comments

Triangular array distributing the Bell numbers (A000110). The value associated with each partition is the product of A074664(k) for each part of size k, times the number of compositions associated with the partition (A048996 & A072881). The value for T(n,k) is the total of these values for each partition of n into k parts.
Calculating the appropriate weights can be done by "working backward". Suppose for example we know the weights for 1 through 6 and desire the weight for the partitions of seven: Substitute the weights for each partition value and multiply. For example, 7 = 4+3 so f([4,3]) = 6*2 = 12; adjusting for the number of permutations of [4,3] we now have 2*12 = 24. Continuing in this manner for each partition of seven and summing to 451 we now know all of the values except that associated with the partition [7] which must be 877 - 451 = 426.
From Mike Zabrocki: (Start)
Every set partition can be uniquely split into "atomic" set partitions or is itself already atomic.
{{1},{2},{3}} = {{1}}|{{1}}|{{1}}
{{1},{23}} = {{1}}|{{12}}
{{12},{3}} = {{12}}|{{1}}
{{13},{2}} is already atomic
{{123}} is already atomic
where this operation | is defined as {A1,...,Ar}|{B1,...,Bs} = {A1,...,Ar,B1+n,...,Bs+n}
where Bi+n = {bi1+n,bi2+n,...,bik+n} if Bi = {bi1,bi2,...,bik} and n = |A1|+|A2|+...+|Ar|. (End)
Subtriangle (n >= 1 and 1 <= k <= n) of triangle given by [0,1,1,2,1,3,1,4,1,5,1,6,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 03 2007
From Peter Bala, Aug 05 2014: (Start)
Let B(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + ... denote the o.g.f. for the Bell numbers A000110. Let f(x) = (B(x) - 1)/(x*B(x)) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 22*x^5 + ..., the o.g.f. for the first column of this array. Then this array appears to be the Riordan array (f(x), x*f(x)).
If true, this gives the o.g.f. of the array as (B(x) - 1)/( x*(t + (1 - t)*B(x)) ) = 1 + (1 + t)*x + (2 + 2*t + t^2)*x^2 + ... and also the hockey-stick recurrence: T(n+1,k+1) = T(n,k) + T(n-1,k) + 2*T(n-2,k) + 6*T(n-3,k) + 22*T(n-4,k) + ..., n,k >= 1. (End)

Examples

			The partitions of 4 are
  4 31 22 211 1111
and the products are
  1*6 2*2 1*1 3*1 1*1
therefore row 4 of the table is
  6 5 3 1.
From _Philippe Deléham_, Aug 03 2007: (Start)
Triangle begins:
     1;
     1,    1;
     2,    2,   1;
     6,    5,   3,   1;
    22,   16,   9,   4,  1;
    92,   60,  31,  14,  5,  1;
   426,  252, 120,  52, 20,  6, 1;
  2146, 1160, 510, 209, 80, 27, 7, 1; ...
Triangle [0,1,1,2,1,3,1,4,1,...] DELTA [1,0,0,0,0,0,...] begins:
  1;
  0,    1;
  0,    1,    1;
  0,    2,    2,   1;
  0,    6,    5,   3,   1;
  0,   22,   16,   9,   4,  1;
  0,   92,   60,  31,  14,  5,  1;
  0,  426,  252, 120,  52, 20,  6, 1;
  0, 2146, 1160, 510, 209, 80, 27, 7, 1; ...
(End)
		

Crossrefs

Cf. A000041, A000110 (row sums), A074664 (1st column), A048996, A072881, A036043, A036042, A084938.

Programs

  • Mathematica
    T[n_, m_] := T[n, m] = Sum[Sum[T[k+i, k]*Binomial[n-m-k-1, n-m-k-i], {i, 1, n-m-k}]*Binomial[k+m-1, k], {k, 1, n-m}] + Binomial[n-1, n-m]; Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 23 2015, after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=sum((sum(T(k+i,k)*binomial(n-m-k-1,n-m-k-i),i,1,n-m-k))*binomial(k+m-1,k),k,1,n-m)+binomial(n-1,n-m); /* Vladimir Kruchinin, Mar 21 2015 */
    
  • PARI
    {T(n,m) = sum(k=1,n-m, (sum(i=1, n-m-k, (T(k+i, k)*binomial(n-m-k-1, n-m-k-i))*binomial(k+m-1, k)))) + binomial(n-1, n-m)};
    for(n=1, 10, for(m=1, n, print1(T(n,m), ", "))) \\ G. C. Greubel, Dec 06 2018

Formula

T(n, m) = Sum_{k=1..n-m}( Sum_{i=1..n-m-k}(T(k+i, k)*C(n-m-k-1, n-m-k-i))*C(k+m-1, k) ) + C(n-1, n-m). - Vladimir Kruchinin, Mar 21 2015

Extensions

Edited by Franklin T. Adams-Watters, Jan 25 2010

A086211 Triangle related to Bell numbers; T(n,k) read by rows, n>=0, 0<=k<=n: T(n,k) = k*T(n-1,k) + Sum(0<=j, T(n-1,k-1+j)); T(0,0)=1, T(0,k)=0 if k>0.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 9, 6, 1, 22, 31, 28, 10, 1, 92, 123, 126, 69, 15, 1, 426, 549, 586, 418, 145, 21, 1, 2146, 2695, 2892, 2425, 1165, 272, 28, 1, 11624, 14319, 15262, 14058, 8551, 2826, 469, 36, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 27 2003, Jun 16 2007

Keywords

Comments

With offset 1 for k, T(n,k) is the number of indecomposable set partitions of [n+2] in which 1 is in the k-th block when the blocks are arranged in order of increasing largest entry. For example, T(2,2)=3 counts 2/134, 23/14, 3/124; see Link. - David Callan, Aug 30 2014

Examples

			Triangle begins:
1;
1, 1;
2, 3, 1;
6, 9, 6, 1;
22, 31, 28, 10, 1;
92, 123, 126, 69, 15, 1;
426, 549, 586, 418, 145, 21, 1;
2146, 2695, 2892, 2425, 1165, 272, 28, 1;
11624, 14319, 15262, 14058, 8551, 2826, 469, 36, 1 ;
...
		

Crossrefs

Cf. A000110.

Formula

Sum(k=0..n, A000110(k)*T(n-k,0)) = A000110(n+1).
Sum_{k=0..n} T(n, k) = A074664(n+2). - Philippe Deléham, May 10 2005

A152431 Eigentriangle, row sums = A000110, the Bell numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 6, 2, 2, 5, 22, 6, 4, 5, 15, 92, 22, 12, 10, 15, 52, 426, 92, 44, 30, 30, 52, 203, 2146, 426, 184, 110, 90, 104, 203, 877, 11624, 2146, 852, 460, 330, 312, 406, 877, 4140, 67146, 11624, 4292, 2130, 1380, 1144, 1218, 1754, 4140, 21147
Offset: 1

Views

Author

Gary W. Adamson, Dec 04 2008

Keywords

Comments

Row sums = the Bell numbers, A000110, starting with offset 1: (1, 2, 5, 15, 52,...).
Left border = A074664 (1, 1, 2, 6, 22 92, 426,...), the INVERTi transform of (1, 2, 5, 15, 52,...).
Sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle =
1;
1, 1;
2, 1, 2;
6, 2, 2, 5;
22, 6, 4, 5, 15;
92, 22, 12, 10, 15, 52;
426, 92, 44, 30, 30, 52, 203;
2146, 426, 184, 110, 90, 104, 203, 877;
11624, 2146, 852, 460, 330, 312, 406, 877, 4140;
67146, 11624, 4292, 2130, 1380, 1144, 1218, 1754, 4140, 21147;
411142, 67146, 23248, 10730, 6390, 4784, 4466, 5262, 8280, 21147, 115975;
...
Row 4 = (6, 2, 2, 5) = termwise products of (6, 2, 1, 1) and (1, 1, 2, 5).
		

Crossrefs

Formula

Triangle read by rows, M*Q. M = an infinite lower triangular matrix with A074664 in every column: (1, 1, 2, 6, 22, 92, 426,...). Q = a matrix with the Bell numbers (1, 1, 2, 5, 15,...) as the main diagonal and the rest zeros.
Previous Showing 21-30 of 39 results. Next