A284855
Array read by antidiagonals: T(n,k) = number of necklaces with n beads and k colors that are the same when turned over.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 9, 6, 1, 6, 15, 16, 18, 8, 1, 7, 21, 25, 40, 27, 12, 1, 8, 28, 36, 75, 64, 54, 16, 1, 9, 36, 49, 126, 125, 160, 81, 24, 1, 10, 45, 64, 196, 216, 375, 256, 162, 32, 1, 11, 55, 81, 288, 343, 756, 625, 640, 243, 48, 1
Offset: 1
Table starts:
1 2 3 4 5 6 7 8 9 10 ...
1 3 6 10 15 21 28 36 45 55 ...
1 4 9 16 25 36 49 64 81 100 ...
1 6 18 40 75 126 196 288 405 550 ...
1 8 27 64 125 216 343 512 729 1000 ...
1 12 54 160 375 756 1372 2304 3645 5500 ...
1 16 81 256 625 1296 2401 4096 6561 10000 ...
1 24 162 640 1875 4536 9604 18432 32805 55000 ...
1 32 243 1024 3125 7776 16807 32768 59049 100000 ...
1 48 486 2560 9375 27216 67228 147456 295245 550000 ...
...
For n = 4 and k = 2, the palindromic necklaces are 0000, 0001, 0011, 0111, 0101, 1111 so T(4,2) = 6. Necklaces are only counted up to cyclic equivalence.
For n = 4 and k = 2, using MacMahon's bijection, with B = 0 and W = 1, the corresponding Sommerville symmetrical cyclic compositions of n = 4 are as follows: 1+1+1+1, 1+1+2, 1+3, 4, 2+2 (with none for 1111). If we let B = 1 and W = 0, we get the corresponding symmetrical cyclic compositions of n=4: (none for 0000) 4, 1+3, 1+1+2, 2+2, 1+1+1+1. (All these cyclic compositions must viewed on a circle.) - _Petros Hadjicostas_, Sep 02 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for the pdf file of Chap. 2]
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Christian G. Bower, Transforms (2).
- Petros Hadjicostas, Generalized colored circular palindromic compositions, Moscow Journal of Combinatorics and Number Theory, 9(2) (2020), 173-186.
- D. M. Y. Sommerville, On certain periodic properties of cyclic compositions of numbers, Proc. London Math. Soc. S2-7(1) (1909), 263-313.
-
a[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2 + 1))/2, k^((n+1)/2)];
Table[a[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 05 2017, translated from PARI *)
-
a(n,k) = if(n % 2 == 0, (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2));
for(n=1, 10, for(k=1, 10, print1( a(n,k),", ");); print(););
A293496
Array read by antidiagonals: T(n,k) = number of chiral pairs of necklaces with n beads using a maximum of k colors.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 3, 0, 0, 0, 0, 10, 15, 12, 1, 0, 0, 0, 20, 45, 72, 38, 2, 0, 0, 0, 35, 105, 252, 270, 117, 6, 0, 0, 0, 56, 210, 672, 1130, 1044, 336, 14, 0, 0, 0, 84, 378, 1512, 3535, 5270, 3795, 976, 30, 0
Offset: 1
Array begins:
==========================================================
n\k | 1 2 3 4 5 6 7 8
----+-----------------------------------------------------
1 | 0 0 0 0 0 0 0 0 ...
2 | 0 0 0 0 0 0 0 0 ...
3 | 0 0 1 4 10 20 35 56 ...
4 | 0 0 3 15 45 105 210 378 ...
5 | 0 0 12 72 252 672 1512 3024 ...
6 | 0 1 38 270 1130 3535 9156 20748 ...
7 | 0 2 117 1044 5270 19350 57627 147752 ...
8 | 0 6 336 3795 23520 102795 355656 1039626 ...
9 | 0 14 976 14060 106960 556010 2233504 7440216 ...
10 | 0 30 2724 51204 483756 3010098 14091000 53615016 ...
...
For T(3,4)=4, the chiral pairs are ABC-ACB, ABD-ADB, ACD-ADC, and BCD-BDC.
For T(4,3)=3, the chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. - _Robert A. Russell_, Sep 28 2018
-
b[n_, k_] := (1/n)*DivisorSum[n, EulerPhi[#]*k^(n/#) &];
c[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2 + 1))/2, k^((n + 1)/2)];
T[, 1] = T[1, ] = 0; T[n_, k_] := (b[n, k] - c[n, k])/2;
Table[T[n - k + 1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 11 2017, translated from PARI *)
-
\\ here b(n,k) is A075195 and c(n,k) is A284855
b(n, k) = (1/n) * sumdiv(n, d, eulerphi(d)*k^(n/d));
c(n, k) = if(n % 2 == 0, (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2));
T(n, k) = (b(n, k) - c(n, k)) / 2;
A054625
Number of n-bead necklaces with 6 colors.
Original entry on oeis.org
1, 6, 21, 76, 336, 1560, 7826, 39996, 210126, 1119796, 6047412, 32981556, 181402676, 1004668776, 5597460306, 31345666736, 176319474366, 995685849696, 5642220380006, 32071565263716, 182807925027504, 1044616697187576, 5982804736593846
Offset: 0
G.f. = 1 + 6*x + 21*x^2 + 76*x^3 + 336*x^4 + 1650*x^5 + 7826*x^6 + 39996*x^7 + ...
-
with(combstruct):A:=[N,{N=Cycle(Union(Z$6))},unlabeled]: seq(count(A,size=n),n=0..22); # Zerinvary Lajos, Dec 05 2007
-
f[n_] := Block[{d = Divisors@ n}, Total[EulerPhi[d]*6^(n/d)]/n]; f[0] = 1; Array[f, 23, 0] (* Robert G. Wilson v, Jan 01 2013 *)
mx=40; CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-6*x^i]/i, {i, 1, mx}], {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
A054630
T(n,k) = Sum_{d|k} phi(d)*n^(k/d)/k, triangle read by rows, T(n,k) for n >= 1 and 1 <= k <= n.
Original entry on oeis.org
1, 2, 3, 3, 6, 11, 4, 10, 24, 70, 5, 15, 45, 165, 629, 6, 21, 76, 336, 1560, 7826, 7, 28, 119, 616, 3367, 19684, 117655, 8, 36, 176, 1044, 6560, 43800, 299600, 2097684, 9, 45, 249, 1665, 11817, 88725, 683289, 5381685, 43046889, 10, 55, 340, 2530, 20008, 166870, 1428580, 12501280, 111111340, 1000010044
Offset: 1
Triangle starts:
1;
2, 3;
3, 6, 11;
4, 10, 24, 70;
5, 15, 45, 165, 629;
6, 21, 76, 336, 1560, 7826;
The 24 necklaces over {0,1,2} of length 4 are:
0000,0001,0002,0011,0012,0021,0022,0101,0102,0111,0112,0121,
0122,0202,0211,0212,0221,0222,1111,1112,1122,1212,1222,2222.
The 24 necklaces over {0,1,2,3} of length 3 are:
000,001,002,003,011,012,013,021,022,023,031,032,
033,111,112,113,122,123,132,133,222,223,233,333.
- D. E. Knuth, Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, Addison-Wesley, 2005.
- Peter Luschny, Rows 1..45, flattened
- H. Fredricksen and I. J. Kessler, An algorithm for generating necklaces of beads in two colors, Discrete Math. 61 (1986), 181-188.
- H. Fredricksen and J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn sequences, Discrete Math. 23(3) (1978), 207-210. Reviewed in MR0523071 (80e:05007).
- Peter Luschny, Implementation of the FKM algorithm in SageMath and Julia.
- F. Ruskey, C. Savage, and T. M. Y. Wang, Generating necklaces, Journal of Algorithms, 13(3), 1992, 414-430.
- Index entries for sequences related to necklaces
-
A054630(n::Int, k::Int) = div(sum(n^gcd(i,k) for i in 1:k), k)
for n in 1:6
println([A054630(n, k) for k in 1:n])
end # Peter Luschny, Sep 10 2018
-
T := (n,k) -> add(n^igcd(i,k), i=1..k)/k:
seq(seq(T(n,k), k=1..n), n=1..10); # Peter Luschny, Sep 10 2018
-
T[n_, k_] := 1/k Sum[EulerPhi[d] n^(k/d), {d, Divisors[k]}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 30 2018 *)
-
def A054630(n,k): return (1/k)*add(euler_phi(d)*n^(k/d) for d in divisors(k))
for n in (1..9):
print([A054630(n,k) for k in (1..n)]) # Peter Luschny, Aug 12 2012
A054624
Number of ways to color vertices of a 10-gon using <= n colors, allowing only rotations.
Original entry on oeis.org
0, 1, 108, 5934, 104968, 976887, 6047412, 28249228, 107377488, 348684381, 1000010044, 2593758618, 6191761368, 13785886387, 28925519364, 57665115096, 109951267744, 201599532153, 357046911756, 613106873542, 1024000320168, 1667988506415, 2655992794708
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
A006565
Number of ways to color vertices of a hexagon using <= n colors, allowing only rotations.
Original entry on oeis.org
0, 1, 14, 130, 700, 2635, 7826, 19684, 43800, 88725, 166870, 295526, 498004, 804895, 1255450, 1899080, 2796976, 4023849, 5669790, 7842250, 10668140, 14296051, 18898594, 24674860, 31853000, 40692925, 51489126, 64573614
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Victor Meally, Letter to N. J. A. Sloane, no date.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
A054631
Triangle read by rows: row n (n >= 1) contains the numbers T(n,k) = Sum_{d|n} phi(d)*k^(n/d)/n, for k=1..n.
Original entry on oeis.org
1, 1, 3, 1, 4, 11, 1, 6, 24, 70, 1, 8, 51, 208, 629, 1, 14, 130, 700, 2635, 7826, 1, 20, 315, 2344, 11165, 39996, 117655, 1, 36, 834, 8230, 48915, 210126, 720916, 2097684, 1, 60, 2195, 29144, 217045, 1119796, 4483815, 14913200, 43046889
Offset: 1
1;
1, 3; (A000217)
1, 4, 11; (A006527)
1, 6, 24, 70; (A006528)
1, 8, 51, 208, 629; (A054620)
1, 14, 130, 700, 2635, 7826; (A006565)
1, 20, 315, 2344, 11165, 39996, 117655; (A054621)
-
A054631 := proc(n,k) add( numtheory[phi](d)*k^(n/d),d=numtheory[divisors](n) ) ; %/n ; end proc: # R. J. Mathar, Aug 30 2011
-
Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n, k, Cyclic], {k, 1, n}], {n, 1, 8}] //Grid (* Geoffrey Critzer, Oct 07 2012, after code by T. D. Noe in A027671 *)
t[n_, k_] := Sum[EulerPhi[d]*k^(n/d)/n, {d, Divisors[n]}]; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
-
T(n, k) = sumdiv(n, d, eulerphi(d)*k^(n/d))/n; \\ Seiichi Manyama, Mar 10 2021
-
T(n, k) = sum(j=1, n, k^gcd(j, n))/n; \\ Seiichi Manyama, Mar 10 2021
A051137
Table T(n,k) read by antidiagonals: number of necklaces allowing turnovers (bracelets) with n beads of k colors.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 6, 10, 10, 5, 1, 1, 8, 21, 20, 15, 6, 1, 1, 13, 39, 55, 35, 21, 7, 1, 1, 18, 92, 136, 120, 56, 28, 8, 1, 1, 30, 198, 430, 377, 231, 84, 36, 9, 1, 1, 46, 498, 1300, 1505, 888, 406, 120, 45, 10, 1
Offset: 0
Table begins with T[0,1]:
1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
1 3 6 10 15 21 28 36 45 55
1 4 10 20 35 56 84 120 165 220
1 6 21 55 120 231 406 666 1035 1540
1 8 39 136 377 888 1855 3536 6273 10504
1 13 92 430 1505 4291 10528 23052 46185 86185
1 18 198 1300 5895 20646 60028 151848 344925 719290
1 30 498 4435 25395 107331 365260 1058058 2707245 6278140
1 46 1219 15084 110085 563786 2250311 7472984 21552969 55605670
1 78 3210 53764 493131 3037314 14158228 53762472 174489813 500280022
-
b[n_, k_] := DivisorSum[n, EulerPhi[#]*k^(n/#) &] / n;
c[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2)];
T[0, ] = 1; T[n, k_] := (b[n, k] + c[n, k])/2;
Table[T[n, k-n], {k, 1, 11}, {n, k-1, 0, -1}] // Flatten
(* Robert A. Russell, Sep 21 2018 after Jean-François Alcover *)
A285522
Array read by antidiagonals: T(m,n) = number of circulant digraphs up to Cayley isomorphism on n vertices with edges colored according to step value using a maximum of m-1 colors.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 6, 4, 1, 1, 6, 18, 10, 5, 1, 1, 20, 24, 40, 15, 6, 1, 1, 14, 135, 70, 75, 21, 7, 1, 1, 48, 130, 544, 165, 126, 28, 8, 1, 1, 52, 648, 700, 1625, 336, 196, 36, 9, 1, 1, 140, 1137, 4480, 2635, 3996, 616, 288, 45, 10, 1
Offset: 1
Table starts:
\n 1 2 3 4 5 6 7 8 9 10
m\ ---------------------------------------------------
1 | 1 1 1 1 1 1 1 1 1 1 ...
2 | 1 2 3 6 6 20 14 48 52 140 ...
3 | 1 3 6 18 24 135 130 648 1137 4995 ...
4 | 1 4 10 40 70 544 700 4480 11056 65824 ...
5 | 1 5 15 75 165 1625 2635 20625 65425 489125 ...
6 | 1 6 21 126 336 3996 7826 72576 280596 2521476 ...
...
Case n=10:
Only 1, 3, 7, 9 are prime to 10.
Multiplication modulo 10 is described by the following multiplication table.
1, 2, 3, 4, 5, 6, 7, 8, 9 => (1)(2)(3)(4)(5)(6)(7)(8)(9) => m^9
3, 6, 9, 2, 5, 8, 1, 4, 7 => (1397)(2684)(5) => m^3
7, 4, 1, 8, 5, 2, 9, 6, 3 => (1793)(2486)(5) => m^3
9, 8, 7, 6, 5, 4, 3, 2, 1 => (19)(28)(37)(46)(5) => m^5
Each row of the multiplication table can be viewed as a permutation and together these form a commutative group on 4 elements. In this case the group is isomorphic to the cyclic group C_4. Each permutation can be represented in cycle notation. (shown above to the right of the corresponding multiplication table row). In order to count the equivalence classes using Polya's enumeration theorem only the number of cycles in each permutation is needed.
This gives the cycle index polynomial (1/4)*(m^9 + m^5 + 2*m^3). Putting m = 1..4 gives 1, 140, 4995, 65824.
-
A132191[m_, n_] := (1/EulerPhi[n])*Sum[If[GCD[k, n] == 1, m^DivisorSum[n, EulerPhi[#] / MultiplicativeOrder[k, #] &], 0], {k, 1, n}];
T[m_, n_] := A132191[m, n]/m;
Table[T[m - n + 1, n], {m, 1, 11}, {n, m, 1, -1}] // Flatten (* Jean-François Alcover, Jun 06 2017 *)
-
a(n,x)=sum(k=1, n, if(gcd(k, n)==1, x^(sumdiv(n, d, eulerphi(d)/znorder(Mod(k, d)))-1), 0))/eulerphi(n);
for(m=1, 6, for(n=1, 10, print1( a(n,m), ", ") ); print(); );
A054627
Number of n-bead necklaces with 8 colors.
Original entry on oeis.org
1, 8, 36, 176, 1044, 6560, 43800, 299600, 2097684, 14913200, 107377488, 780903152, 5726645688, 42288908768, 314146329192, 2345624810432, 17592187093524, 132458812569728, 1000799924679192, 7585009898729264, 57646075284033552, 439208192231379680
Offset: 0
G.f. = 1 + 8*x + 36*x^2 + 176*x^3 + 1044*x^4 + 6560*x^5 + 43800*x^6 + ...
-
with(combstruct):A:=[N,{N=Cycle(Union(Z$8))},unlabeled]: seq(count(A,size=n),n=0..20); # Zerinvary Lajos, Dec 05 2007
-
mx=40; CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-8*x^i]/i, {i, 1, mx}], {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
k=8; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/n, {n, 1, 30}], 1] (* Robert A. Russell, Sep 21 2018 *)
-
a(n)=if(n==0, 1, 1/n*sumdiv(n, d, eulerphi(d)*8^(n/d))); \\ Altug Alkan, Sep 21 2018
Comments