cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A299120 a(n) = (n-1)*(n-2)*(n+3)*(n+2)/12.

Original entry on oeis.org

1, 0, 0, 5, 21, 56, 120, 225, 385, 616, 936, 1365, 1925, 2640, 3536, 4641, 5985, 7600, 9520, 11781, 14421, 17480, 21000, 25025, 29601, 34776, 40600, 47125, 54405, 62496, 71456, 81345, 92225, 104160, 117216, 131461, 146965, 163800, 182040, 201761, 223041
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Feb 03 2018

Keywords

Crossrefs

Programs

  • GAP
    List([0..10^3], n->n^4/12+n^3/6-7*n^2/12-2*n/3+1); # Muniru A Asiru, Feb 04 2018
    
  • Magma
    [n^4/12 + n^3/6 - 7*n^2/12 - 2*n/3 + 1: n in [0..40]];
    
  • Maple
    seq(n^4/12+n^3/6-7*n^2/12-2*n/3+1, n=0..10^3); # Muniru A Asiru, Feb 04 2018
  • Mathematica
    Rest@ CoefficientList[Series[(1 - 5 x + 10 x^2 - 5 x^3 + x^4)/(1 - x)^5, {x, 0, 41}], x] (* Michael De Vlieger, Feb 10 2018 *)
    f[n_] := n^4/12 + n^3/6 - 7*n^2/12 - 2*n/3 + 1; Array[f, 40, 0] (* or *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 0, 0, 5, 21}, 40] (* Robert G. Wilson v, Mar 12 2018 *)
  • PARI
    Vec((1 - 5*x + 10*x^2 - 5*x^3 + x^4) / (1 - x)^5 + O(x^50)) \\ Colin Barker, Feb 05 2018

Formula

a(n) = n^4/12 + n^3/6 - 7*n^2/12 - 2*n/3 + 1 = (n-1)*(n-2)*(n+3)*(n+2)/12.
From Colin Barker, Feb 05 2018: (Start)
G.f.: (1 - 5*x + 10*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5. (End)
a(n) = A033275(n+2) for n > 1. - Georg Fischer, Oct 09 2018
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=3} 1/a(n) = 43/150.
Sum_{n>=3} (-1)^(n+1)/a(n) = 16*log(2)/5 - 154/75. (End)
E.g.f.: exp(x)*(12 - 12*x + 6*x^2 + 8*x^3 + x^4)/12. - Stefano Spezia, Feb 21 2024

Extensions

Edited by Wolfdieter Lang, Apr 06 2018

A299198 a(n) = n^4/6 - 2*n^3/3 - n^2/6 + 5*n/3 + 1.

Original entry on oeis.org

2, 1, 0, 5, 26, 77, 176, 345, 610, 1001, 1552, 2301, 3290, 4565, 6176, 8177, 10626, 13585, 17120, 21301, 26202, 31901, 38480, 46025, 54626, 64377, 75376, 87725, 101530, 116901, 133952, 152801, 173570, 196385, 221376, 248677, 278426, 310765, 345840, 383801, 424802, 469001
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 04 2018

Keywords

Examples

			For n=2, a(2) = 1^4/6 - 2*1^3/3 - 1^2/6 + 5*1/3 + 1 = 2.
		

Crossrefs

Programs

  • GAP
    List([1..50], n -> n^4/6-2*n^3/3-n^2/6+5*n/3+1); # Muniru A Asiru, Feb 04 2018
    
  • Julia
    [div((n-3)*(n+1)*(n^2-2*n-2),6) for n in 1:50] |> println # Bruno Berselli, Apr 11 2018
  • Magma
    [n^4/6-2*n^3/3-n^2/6+5*n/3+1: n in [1..50]];
    
  • Maple
    seq(n^4/6-2*n^3/3-n^2/6+5*n/3+1,n=1..50); # Muniru A Asiru, Feb 04 2018
  • Mathematica
    f[n_] := n^4/6 - 2 n^3/3 - n^2/6 + 5 n/3 + 1; Array[f, 50] (* or *)
    CoefficientList[ Series[(-2 + 9 x - 15 x^2 + 5 x^3 - x^4)/(-1 + x)^5, {x, 0, 50}], x] (* or *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {2, 1, 0, 5, 26}, 50] (* Robert G. Wilson v, Feb 09 2018 *)
  • PARI
    Vec(x*(2 - 9*x + 15*x^2 - 5*x^3 + x^4) / (1 - x)^5 + O(x^50)) \\ Colin Barker, Feb 05 2018
    

Formula

a(n) = (n - 3)*(n + 1)*(n^2 - 2*n - 2)/6 = A299120(n-1) + A299120(1-n).
From Colin Barker, Feb 05 2018: (Start)
G.f.: x*(2 - 9*x + 15*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
E.g.f.: exp(x)*(6 + 6*x - 6*x^2 + 2*x^3 + x^4)/6. - Iain Fox, Feb 09 2018
6*a(n) = A067998(n)^2 - 5*A067998(n) + 6. - Bruno Berselli, Apr 11 2018

A092081 Triangle of certain double factorials.

Original entry on oeis.org

1, 1, 2, 1, 3, 8, 1, 4, 15, 48, 1, 5, 24, 105, 384, 1, 6, 35, 192, 945, 3840, 1, 7, 48, 315, 1920, 10395, 46080, 1, 8, 63, 480, 3465, 23040, 135135, 645120, 1, 9, 80, 693, 5760, 45045, 322560, 2027025, 10321920, 1, 10, 99, 960, 9009, 80640, 675675, 5160960
Offset: 0

Views

Author

Wolfdieter Lang, Mar 19 2004

Keywords

Comments

This is the rectangular array A(3;m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0, read by SW-NE diagonals. For n!! see A006882 (double factorials).

Crossrefs

Diagonals give: A000165 (double factorials of 2*n), A001147(n+1), A002866, A051577-83.
Columns give: A000012 (powers of 1), A000027 (naturals >=2), A005563, 3*A077415, for n=0..3.

Formula

a(m, n)=(n+m)!!/(m-n)!!, 0<=n<=m, else 0, with 0!! := 1.

A145069 a(n) = n*(n^2 + 3*n + 5)/3.

Original entry on oeis.org

0, 3, 10, 23, 44, 75, 118, 175, 248, 339, 450, 583, 740, 923, 1134, 1375, 1648, 1955, 2298, 2679, 3100, 3563, 4070, 4623, 5224, 5875, 6578, 7335, 8148, 9019, 9950, 10943, 12000, 13123, 14314, 15575, 16908, 18315, 19798, 21359, 23000, 24723, 26530
Offset: 0

Views

Author

Keywords

Comments

Old name was: Partial sums of A002061, starting at n=2.
Number of floating point dot operations (multiplications and divisions) in the factorization of an (n+1) X (n+1) real matrix by Gaussian elimination as, e.g., implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of multiplications alone is given by A007290. The number of additions is given by A000330. - Hugo Pfoertner, Mar 28 2018

Examples

			a(2) = a(1) + 2^2 + 2 + 1 = 3 + 4 + 2 + 1 = 10.
a(3) = a(2) + 3^2 + 3 + 1 = 10 + 9 + 3 + 1 = 23.
		

Crossrefs

Cf. A002061 (n^2 - n + 1).
Cf. A028387 (n + (n+1)^2).
Cf. A077415 (zero followed by partial sums of A028387, starting at n=1).
Cf. A007290.

Programs

  • Magma
    I:=[0, 3, 10, 23]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
  • Maple
    A145069:=n->n*(n^2+3*n+5)/3: seq(A145069(n), n=0..100); # Wesley Ivan Hurt, Aug 21 2014
  • Mathematica
    lst={};s=0;Do[s+=n^2+n+1;AppendTo[lst,s-1],{n,0,5!}];lst
    CoefficientList[Series[x(3-2*x+x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
    Table[n (n^2+3n+5)/3,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,3,10,23},50] (* Harvey P. Dale, Sep 10 2016 *)
  • PARI
    {a=0; for(n=1, 42, print1(a, ", "); a=a+n^2+n+1)} \\ adapted by Michel Marcus, Aug 23 2014
    

Formula

G.f.: x*(3-2*x+x^2)/(1-x)^4.
a(n) = Sum_{j=2..n+1} A002061(j).
a(n) = a(n-1) + n^2 + n + 1 for n > 0, with a(0) = 0.
a(n) = n*(n^2+3*n+5)/3. - Bruno Berselli, Apr 01 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 30 2012
a(n) = Sum_{i=1..n} 3i+(n-i)^2. - Wesley Ivan Hurt, Aug 21 2014
a(n) = A007290(n+2) + n. - Hugo Pfoertner, Mar 28 2018

Extensions

Edited by Klaus Brockhaus, Oct 21 2008
G.f. adapted to the offset by Bruno Berselli, Apr 01 2011
Name, offset, and formulas changed by Wesley Ivan Hurt, Aug 21 2014

A154232 a(2n) = (n^2-n-1) + a(2n-2), a(2n+1) = (n^2-n-1)*a(2n-1), with a(0)=0 and a(1)=1.

Original entry on oeis.org

0, 1, -1, -1, 0, -1, 5, -5, 16, -55, 35, -1045, 64, -30305, 105, -1242505, 160, -68337775, 231, -4851982025, 320, -431826400225, 429, -47069077624525, 560, -6166049168812775, 715, -955737621165980125, 896, -172988509431042402625
Offset: 0

Views

Author

Roger L. Bagula, Jan 05 2009

Keywords

Comments

Essentially A077415 and A130031 interleaved, see formulas.

Crossrefs

Programs

  • Magma
    function a(n)
      if n lt 2 then return n;
      elif (n mod 2 eq 0) then return ((n^2-2*n-4)/4) + a(n-2);
      else return ((n^2-4*n-1)/4)*a(n-2);
      end if; return a;
    end function;
    [a(n): n in [0..40]]; // G. C. Greubel, Mar 02 2021
  • Maple
    a[0]:= 0: a[1]:= 1:
    for n from 1 to 49 do
      a[2*n]:= (n^2-n-1) +a[2*n-2];
      a[2*n+1]:= (n^2-n-1)*a[2*n-1];
    od:
    seq(a[i],i=0..99); # Robert Israel, Sep 06 2016
  • Mathematica
    (* First program *)
    b[n_]:= b[n]= If[n==0, 0, n^2 -n -1 + b[n-1]];
    c[n_]:= c[n]= If[n==0, 1, (n^2 -n -1)*c[n-1]];
    Flatten[Table[{b[n], c[n]}, {n, 0, 15}]] (* modified by G. C. Greubel, Mar 02 2021 *)
    (* Second program *)
    a[n_]:= a[n]= If[n<2, n, If[EvenQ[n], ((n^2-2*n-4)/4) + a[n-2], ((n^2-4*n-1)/4)*a[n-2]]];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Mar 02 2021 *)
  • Sage
    def a(n):
        if (n<2): return n
        elif (n%2==0): return ((n^2-2*n-4)/4) + a(n-2)
        else: return ((n^2-4*n-1)/4)*a(n-2)
    [a(n) for n in (0..40)] # G. C. Greubel, Mar 02 2021
    

Formula

From Robert Israel, Sep 06 2016: (Start)
a(2*n) = A077415(n) for n >= 2.
a(2*n+1) = cos(Pi*sqrt(5)/2)*Gamma(n+1/2-sqrt(5)/2)*Gamma(n+1/2+sqrt(5)/2)/Pi.
a(2*n+1) = (-1)^n*A130031(n). (End)

Extensions

Edited by Robert Israel, Sep 06 2016

A229834 Expansion of (1+4*x+x^2) / ((1-x)^3*(1+x)^4).

Original entry on oeis.org

1, 3, 1, 11, -2, 26, -10, 50, -25, 85, -49, 133, -84, 196, -132, 276, -195, 375, -275, 495, -374, 638, -494, 806, -637, 1001, -805, 1225, -1000, 1480, -1224, 1768, -1479, 2091, -1767, 2451, -2090, 2850, -2450, 3290, -2849, 3773, -3289, 4301, -3772, 4876, -4300, 5500, -4875, 6175, -5499, 6903, -6174, 7686, -6902
Offset: 0

Views

Author

Stefano Maruelli, Dec 19 2013

Keywords

Comments

The sequence can be generated in the following way:
--------------------------- --------------------------
[0] [1] [2] [3] [4] ... [i]
--------------------------- --------------------------
[0] 1, 1, 1, 1, 1, ... t(0,i) = 1
[1] 7, 6, 5, 4, 3, ... t(1,i) = t(1,i-1) - t(0,i)
[2] 19, 13, 8, 4, 1, ... t(2,i) = t(2,i-1) - t(1,i)
[3] 37, 24, 16, 12, 11, ... t(3,i) = t(3,i-1) - t(2,i)
[4] 61, 37, 21, 9, -2, ... t(4,i) = t(4,i-1) - t(3,i)
[5] 91, 54, 33, 24, 26, ... etc.
[6] 127, 73, 40, 16, -10, ...
[7] 169, 96, 56, 40, 50, ...
[8] 217, 121, 65, 25, -25, ...
[9] 271, 150, 85, 60, 85, ...
...
Column 0 is A003215;
column 1 is A032528;
column 2 is A001082;
column 3 is A241496;
column 4 is this sequence.
The third differences are 16, -35, 64, -105, 160, ..., a signed variant of A077415. - R. J. Mathar, Apr 18 2014

Crossrefs

Cf. A077415; A058373: a(2k) = -A058373(k); A051925: a(2k+1) = A051925(k+2).
Columns of the table in Comments section: A001082, A003215, A032528.

Programs

  • Mathematica
    Table[1 + n (n + 5) (9 - (2 n + 5) (-1)^n)/48, {n, 0, 60}] (* Bruno Berselli, Apr 22 2014 *)
    CoefficientList[Series[(1+4x+x^2)/((1-x)^3(1+x)^4),{x,0,60}],x] (* or *) LinearRecurrence[{-1,3,3,-3,-3,1,1},{1,3,1,11,-2,26,-10},60] (* Harvey P. Dale, Jan 27 2022 *)

Formula

G.f.: (1 + 4*x + x^2) / ((1 - x)^3*(1 + x)^4). - R. J. Mathar, Apr 18 2014
a(n) = a(-n-5) = 1 + n*(n + 5)*(9 - (2*n + 5)*(-1)^n)/48. [Bruno Berselli, Apr 22 2014]

A254443 Numbers n such that T(n) + T(n+1) + ... + T(n+21) is a square, where T(m) = A000217(m) is the m-th triangular number.

Original entry on oeis.org

35, 75, 911, 1707, 18383, 34263, 366947, 683751, 7320755, 13640955, 146048351, 272135547, 2913646463, 5429070183, 58126881107, 108309268311, 1159623975875, 2160756296235, 23134352636591, 43106816656587, 461527428756143, 859975576835703, 9207414222486467
Offset: 1

Views

Author

Colin Barker, May 04 2015

Keywords

Comments

Positive integers y in the solutions to 2*x^2-22*y^2-484*y-3542 = 0.

Crossrefs

Cf. A116476 (length 11), A257293 (length 13).

Programs

  • PARI
    Vec(x*(9*x^4+4*x^3-136*x^2-40*x-35)/((x-1)*(x^4-20*x^2+1)) + O(x^100))

Formula

G.f.: x*(9*x^4+4*x^3-136*x^2-40*x-35) / ((x-1)*(x^4-20*x^2+1)).

A370912 a(n) = n*(n + 2)*(n + 4).

Original entry on oeis.org

0, 15, 48, 105, 192, 315, 480, 693, 960, 1287, 1680, 2145, 2688, 3315, 4032, 4845, 5760, 6783, 7920, 9177, 10560, 12075, 13728, 15525, 17472, 19575, 21840, 24273, 26880, 29667, 32640, 35805, 39168, 42735, 46512, 50505, 54720, 59163, 63840, 68757, 73920
Offset: 0

Views

Author

Peter Luschny, Mar 05 2024

Keywords

Crossrefs

Cases of A370419(n, k): A000012 (n=0), A001477 (n=1), A005563 (n=2), this sequence (n=3), A190577(n=4).

Programs

  • Maple
    a := n -> n*(n + 2)*(n + 4): seq(a(n), n = 0..40);
    # Using the generating function:
    gf := 3*x*(x^2 - 4*x + 5)/(x - 1)^4: ser := series(gf, x, 42):
    seq(coeff(ser, x, n), n = 0..40);
  • Mathematica
    Table[n(n+2)(n+4), {n,0,40}] (* or *) CoefficientList[Series[3*x*(x^2 - 4*x + 5)/(x - 1)^4,{x,0,40}],x] (* James C. McMahon, Mar 05 2024 *)

Formula

a(n) = 8*Pochhammer(n/2, 3).
a(n) = [x^n] 3*x*(x^2 - 4*x + 5)/(x - 1)^4.
a(n) = 3 * A077415(n + 2).
From Klaus Purath, Aug 02 2024: (Start)
a(n)^2 = A028347(n+2)^3 + 4*A028347(n+2)^2.
a(n+1) - a(n) = A211441(n+2).
a(n) = 3*Sum_{i = 1..n} A028387(i). (End)
E.g.f.: exp(x)*x*(15 + 9*x + x^2). - Stefano Spezia, Aug 18 2024
From Amiram Eldar, Oct 03 2024: (Start)
Sum_{n>=1} 1/a(n) = 11/96.
Sum_{n>=1} (-1)^(n+1)/a(n) = 5/96. (End)
Previous Showing 11-18 of 18 results.