cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 59 results. Next

A351324 Number of tilings of a 7 X 3n rectangle with right trominoes.

Original entry on oeis.org

1, 0, 520, 22656, 1795360, 115363072, 7876120608, 527256809600, 35522814546496, 2388257605782016, 160678147466414272, 10807663334085120512, 727010169682181839360, 48903265220016072792320, 3289569236212332037229184, 221278350342281369716796672
Offset: 0

Views

Author

Gerhard Kirchner, Feb 21 2022

Keywords

Comments

See A351322 for algorithm.
This is the Hadamard sum of the following 4 sequences: 0, 0,0,0, 158208,.. (tilings which have both vertical and horizontal faults), 0,0,480,6144, 125952 ... (tilings which have horizontal faults but no vertical faults), 00,0,0,112192,.. (tilings which have vertical but no horizontal faults), 1, 0,40, 16512, 1399008 ,... (tilings which have neither horizontal nor vertical faults). - R. J. Mathar, Dec 08 2022

Crossrefs

Cf. A077957, A000079, A046984, A084478, A351322, A351323, A236578 (straight trominoes), A233343 (mixed trominoes).

Formula

G.f.: (1 - 22*x - 1831*x^2 - 29454*x^3 - 270630*x^4 - 2070388*x^5 - 12125943*x^6 - 48147976*x^7 - 151548064*x^8 - 417242784*x^9 - 423562924*x^10 + 586224672*x^11 + 915719344*x^12 + 349980800*x^13 + 371621248*x^14 - 6541312*x^15 - 9691136*x^16 + 589824*x^17)/(1 - 22*x - 2351*x^2 - 40670*x^3 - 345038*x^4 - 3522884*x^5 - 28528327*x^6 - 145350120*x^7 - 623982088*x^8 - 2110011040*x^9 - 1354478796*x^10 + 9281598624*x^11 + 15001687984*x^12 + 3456230016*x^13 - 3194643904*x^14 - 1637793792*x^15 - 575934464*x^16 + 65175552*x^17).
a(n) = 22*a(n-1) + 2351*a(n-2) + 40670*a(n-3) + 345038*a(n-4) + 3522884*a(n-5) + 28528327*a(n-6) + 145350120*a(n-7) + 623982088*a(n-8) + 2110011040*a(n-9) + 1354478796*a(n-10) - 9281598624*a(n-11) - 15001687984*a(n-12) - 3456230016*a(n-13) + 3194643904*a(n-14) + 1637793792*a(n-15) + 575934464*a(n-16) - 65175552*a(n-17) for n>16.

A083879 a(0)=1, a(1)=4, a(n) = 8*a(n-1) - 14*a(n-2), n >= 2.

Original entry on oeis.org

1, 4, 18, 88, 452, 2384, 12744, 68576, 370192, 2001472, 10829088, 58612096, 317289536, 1717746944, 9299922048, 50350919168, 272608444672, 1475954689024, 7991119286784, 43265588647936, 234249039168512, 1268274072276992
Offset: 0

Views

Author

Paul Barry, May 08 2003

Keywords

Comments

Binomial transform of A083878.
4th binomial transform of A077957. Inverse binomial transform of A083880. - Philippe Deléham, Nov 30 2008
From L. Edson Jeffery, Apr 26 2011: (Start)
Let G be the Gram matrix
G =
(4 1 0 1)
(1 4 1 0)
(0 1 4 -1)
(1 0 -1 4)
of A028997. Then a(n) = (1/4)*Trace(G^n). (End)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8,-14},{1,4},30] (* Harvey P. Dale, May 08 2013 *)

Formula

a(n) = 2^((n-2)/2)*(2*sqrt(2)-1)^n + 2^((n-2)/2)*(2*sqrt(2)+1)^n;
a(n) = Sum_{k=0..n} C(n, 2k)*5^(n-2k)2^k.
G.f.: (1-4x)/(1-8x+14x^2).
E.g.f.: exp(4x)cosh(x*sqrt(2)).
((4+sqrt(2))^n + (4-sqrt(2))^n)/2. Offset=0. a(3)=88. - Al Hakanson (hawkuu(AT)gmail.com), Oct 15 2008
a(n) = Sum_{k=0..n} A098158(n,k)*2^(3*k-n). - Philippe Deléham, Nov 30 2008

A097038 A Jacobsthal variant.

Original entry on oeis.org

0, 1, 1, 5, 7, 21, 35, 85, 155, 341, 651, 1365, 2667, 5461, 10795, 21845, 43435, 87381, 174251, 349525, 698027, 1398101, 2794155, 5592405, 11180715, 22369621, 44731051, 89478485, 178940587, 357913941, 715795115, 1431655765, 2863245995
Offset: 0

Views

Author

Paul Barry, Jul 19 2004

Keywords

Comments

Convolution of A001045 and A077957.
Also interleaving of A002450(n+1) and A006095(n+1).

Crossrefs

Programs

  • PARI
    concat(0, Vec(x/((1-2*x^2)*(1-x-2*x^2)) + O(x^50))) \\ Michel Marcus, Nov 13 2015
    
  • PARI
    vector(50, n, n--; 2*2^n/3+(-1)^n/3-2^(n/2)*(1+(-1)^n)/2) \\ Altug Alkan, Nov 13 2015

Formula

G.f.: 1/(1-x-2*x^2) - 1/(1-2*x^2) = x/((1-2*x^2)*(1-x-2*x^2));
a(n) = 2*2^n/3+(-1)^n/3-2^(n/2)*(1+(-1)^n)/2;
a(n) = sum{k=0..floor((n+1)/2), binomial(n-k+1, k-1)2^k };
a(n) = sum{k=0..n, 2^(k/2)(1+(-1)^k)A001045(n-k)/2 };
a(n) = A001045(n+1)-A077957(n).

A131575 First differences of A131572.

Original entry on oeis.org

1, 1, 0, 2, 0, 4, 0, 8, 0, 16, 0, 32, 0, 64, 0, 128, 0, 256, 0, 512, 0, 1024, 0, 2048, 0, 4096, 0, 8192, 0, 16384, 0, 32768, 0, 65536, 0, 131072, 0, 262144, 0, 524288, 0, 1048576, 0, 2097152, 0, 4194304, 0, 8388608, 0
Offset: 0

Views

Author

Paul Curtz, Aug 28 2007

Keywords

Programs

  • Mathematica
    Differences[LinearRecurrence[{0,2},{0,1,2},50]] (* or *) LinearRecurrence[ {0, 2}, {1, 1, 0}, 50] (* or *) Join[{1},Riffle[2^Range[0,30],0]] (* Harvey P. Dale, Jul 10 2018 *)

Formula

a(n) = A131572(n+1) - A131572(n).
a(n) = A077957(n-1), n>0.
G.f.: (1 + x - 2x^2)/(1-2x^2). - Philippe Deléham, Oct 01 2011

Extensions

Edited by R. J. Mathar, Jul 16 2008
More terms from Philippe Deléham, Oct 01 2011

A133851 Sloping binary representation of powers of 4 (A000302), slope = -1 .

Original entry on oeis.org

1, 0, 0, 4, 0, 0, 16, 0, 0, 64, 0, 0, 256, 0, 0, 1024, 0, 0, 4096, 0, 0, 16384, 0, 0, 65536, 0, 0, 262144, 0, 0, 1048576, 0, 0, 4194304, 0, 0, 16777216, 0, 0, 67108864, 0, 0, 268435456, 0, 0, 1073741824, 0, 0, 4294967296, 0, 0, 17179869184, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Jan 06 2008

Keywords

Examples

			When powers of 4 are written in binary (see A098608), under each other as:
0000000000001 (1)
0000000000100 (4)
0000000010000 (16)
0000001000000 (64)
0000100000000 (256)
0010000000000 (1024)
1000000000000 (4096)
and one collects their bits from the column=0 to NW-direction (from the least to the most significant end), one gets 1 (1), 00 (0), 000 (0), 0100 (4), 00000 (0), 000000 (0), 0010000 (16), etc. (see 0105033 for similar transformation done on nonnegative integers)
		

Crossrefs

Cf. A037095, A077957, A105033, A000302, A098608, A102370(sloping binary numbers).

Formula

a(3n) = A000302(n), a(3n+1) = a(3n+2) = 0. - Alois P. Heinz, Dec 10 2020

A136489 Triangle T(n, k) = 3*A007318(n, k) - 2*A034851(n, k).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 8, 10, 8, 1, 1, 9, 18, 18, 9, 1, 1, 12, 27, 40, 27, 12, 1, 1, 13, 39, 67, 67, 39, 13, 1, 1, 16, 52, 112, 134, 112, 52, 16, 1, 1, 17, 68, 164, 246, 246, 164, 68, 17, 1, 1, 20, 85, 240, 410, 504, 410, 240, 85, 20, 1
Offset: 0

Views

Author

Gary W. Adamson, Jan 01 2008

Keywords

Examples

			First few rows of the triangle are:
  1;
  1,   1;
  1,   4,   1;
  1,   5,   5,   1;
  1,   8,  10,   8,   1;
  1,   9,  18,  18,   9,   1;
  1,  12,  27,  40,  27,  12,   1;
  1,  13,  39,  67,  67,  39,  13,   1;
  1,  16,  52, 112, 134, 112,  52,  16,   1;
  1,  17,  68, 164, 246, 246, 164,  68,  17,   1;
  ...
		

Crossrefs

Cf. A034851, A042948, A077957, A122746 (row sums).

Programs

  • Magma
    A136489:= func< n,k | 2*Binomial(n,k) - Binomial(n mod 2, k mod 2)*Binomial(Floor(n/2), Floor(k/2)) >;
    [A136489(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2023
    
  • Mathematica
    T[n_, k_]:= 2*Binomial[n,k] -Binomial[Mod[n,2], Mod[k,2]]*Binomial[Floor[n/2], Floor[k/2]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2023 *)
  • SageMath
    def A136489(n,k): return 2*binomial(n,k) - binomial(n%2, k%2)*binomial(n//2, k//2)
    flatten([[A136489(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 01 2023

Formula

T(n, k) = 3*A007318(n, k) - 2*A034851(n, k).
Sum_{k=0..n} T(n, k) = A122746(n).
From G. C. Greubel, Aug 01 2023: (Start)
T(n, k) = 2*A007318(n, k) - A051159(n, k).
T(n, k) = T(n-1, k) + T(n-1, k-1) if k is even.
T(n, n-k) = T(n, k).
T(n, n-1) = A042948(n).
Sum_{k=0..n} (-1)^k * T(n, k) = 2*[n=0] - A077957(n). (End)

A161161 Irregular triangle of differences T(n,k) = A083906(n,k) - A083906(n-1,k) of q-Binomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 3, 5, 2, 2, 1, 1, 2, 3, 5, 7, 5, 4, 3, 1, 1, 1, 2, 3, 5, 7, 11, 8, 9, 7, 6, 2, 2, 1, 1, 2, 3, 5, 7, 11, 15, 14, 15, 15, 13, 11, 7, 4, 3, 1, 1, 1, 2, 3, 5, 7, 11, 15, 22, 21, 25, 25, 27, 23, 22, 15, 13, 8, 6, 2, 2, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 32, 37, 42, 44
Offset: 1

Views

Author

Alford Arnold, Jun 04 2009

Keywords

Examples

			The differences between 5 3 4 3 1 and 4 2 2 yield row four : 1 1 2 3 1.
Triangle begins:
  1;
  1, 1;
  1, 1, 2;
  1, 1, 2, 3, 1;
  1, 1, 2, 3, 5, 2,  2;
  1, 1, 2, 3, 5, 7,  5,  4,  3,  1;
  1, 1, 2, 3, 5, 7, 11,  8,  9,  7,  6,  2,  2;
  1, 1, 2, 3, 5, 7, 11, 15, 14, 15, 15, 13, 11,  7,  4,  3,  1;
  1, 1, 2, 3, 5, 7, 11, 15, 22, 21, 25, 25, 27, 23, 22, 15, 13, 8, 6, 2, 2;
  ...
		

Crossrefs

Cf. A000079 (row sums), A002865 (antidiagonal sums), A077957 (alternating row sums).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 100);
    qBinom:= func< n,k,x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >;
    A083906:= func< n,k | Coefficient(R!( (&+[qBinom(n,k,x): k in [0..n]]) ), k) >;
    A161161:= func< n,k | A083906(n,k) - A083906(n-1,k) >;
    [A161161(n,k): k in [0..Floor(n^2/4)], n in [1..12]]; // G. C. Greubel, Feb 13 2024
    
  • Maple
    A161161 := proc(n,m)
         A083906(n,m)-A083906(n-1,m) ;
    end proc:
    for n from 0 to 10 do
         for k from 0 to A033638(n)-1 do
             printf("%d, ", A161161(n, k)) ;
         od:
    od: # R. J. Mathar, Jul 13 2012
  • Mathematica
    b[n_, k_] := b[n, k] = SeriesCoefficient[Sum[QBinomial[n, m, q], {m, 0, n}], {q, 0, k}];
    T[n_, k_] := b[n, k] - b[n - 1, k];
    Table[Table[T[n, k], {k, 0, n^2/4}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 25 2017 *)
  • SageMath
    def t(n, k): # t = A083906
        if k<0 or k> (n^2//4): return 0
        elif n<2 : return n+1
        else: return 2*t(n-1, k) - t(n-2, k) + t(n-2, k-n+1)
    def A161161(n,k): return t(n, k) - t(n-1, k)
    flatten([[A161161(n, k) for k in range(int(n^2//4)+1)] for n in range(1,13)]) # G. C. Greubel, Feb 13 2024

Formula

Sum_{k=0..floor(n^2/4)} T(n, k) = A000079(n-1) (row sums).
Sum_{k=0..(n+2 - ceiling(sqrt(4*n)))} T(n-k, k) = A002865(n+1) (antidiagonal sums).
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A077957(n-1). - G. C. Greubel, Feb 13 2024

A217730 Expansion of (1+2*x-x^3)/(1-4*x^2+2*x^4).

Original entry on oeis.org

1, 2, 4, 7, 14, 24, 48, 82, 164, 280, 560, 956, 1912, 3264, 6528, 11144, 22288, 38048, 76096, 129904, 259808, 443520, 887040, 1514272, 3028544, 5170048, 10340096, 17651648, 35303296, 60266496, 120532992, 205762688, 411525376, 702517760, 1405035520, 2398545664, 4797091328, 8189147136, 16378294272, 27959497216
Offset: 0

Views

Author

Philippe Deléham, Mar 22 2013

Keywords

Comments

In general, a(n,j,m) = Sum_{r=1..m} (2^n*(1-(-1)^r)*cos(Pi*r/(m+1))^n*cot(Pi*r/(2*(m+1)))*sin(j*Pi*r/(m+1)))/(m+1) gives the number of paths of length n starting at the j-th node on the path graph P_m. Here we have the case m=7 and j=3. - Herbert Kociemba, Sep 17 2020

Crossrefs

First differences are in A062113.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x-x^3)/(1-4*x^2+2*x^4))); // Bruno Berselli, Mar 22 2013
    
  • Mathematica
    CoefficientList[Series[(1 + 2 x - x^3)/(1 - 4 x^2 + 2 x^4), {x, 0, 40}], x] (* Bruno Berselli, Mar 22 2013 *)
    a[n_,j_,m_]:=Sum[(2^(n+1)Cos[Pi r/(m+1)]^n Cot[Pi r/(2(m+1))] Sin[j Pi r/(m+1)])/(m+1),{r,1,m,2}]
    Table[a[n,3,7],{n,0,40}]//Round (* Herbert Kociemba, Sep 17 2020 *)
  • Maxima
    makelist(coeff(taylor((1+2*x-x^3)/(1-4*x^2+2*x^4), x, 0, n), x, n), n, 0, 40); /* Bruno Berselli, Mar 22 2013 */

Formula

G.f.: (1+x)*(1+x-x^2)/(1-4*x^2+2*x^4).
a(n) = Sum_{k=0..n} A216232(n-k,k).
a(n) = 4*a(n-2) - 2*a(n-4) for n>=4, a(0)=1, a(1)=2, a(2)=4, a(3)=7.
a(2*n) = A007070(n), a(2*n-1) = a(2*n)/2 = A007070(n)/2.
a(n)*a(n+1)-a(n-1)*a(n+2) = (1-(-1)^n)*2^floor(n/2-1) for n>0. - Bruno Berselli, Mar 22 2013
a(n) = Sum_{r=1..7} (2^n*(1-(-1)^r)*cos(Pi*r/8)^n*cot(Pi*r/16)*sin(3*Pi*r/8))/8. - Herbert Kociemba, Sep 17 2020

A221337 T(n,k)=Number of nXk arrays of occupancy after each element stays put or moves to some king-move neighbor, with every occupancy equal to zero or two.

Original entry on oeis.org

0, 2, 2, 0, 6, 0, 4, 20, 20, 4, 0, 68, 0, 68, 0, 8, 232, 790, 790, 232, 8, 0, 792, 0, 10704, 0, 792, 0, 16, 2704, 34042, 142792, 142792, 34042, 2704, 16, 0, 9232, 0, 1937900, 0, 1937900, 0, 9232, 0, 32, 31520, 1470618, 26264018
Offset: 1

Views

Author

R. H. Hardin Jan 11 2013

Keywords

Comments

Table starts
..0....2.....0.......4......0.......8........0......16.....0.32
..2....6....20......68....232.....792.....2704....9232.31520
..0...20.....0.....790......0...34042........0.1470618
..4...68...790...10704.142792.1937900.26264018
..0..232.....0..142792......0
..8..792.34042.1937900
..0.2704.....0
.16.9232
..0

Examples

			Some solutions for n=3 k=4
..0..2..2..2....2..0..0..0....2..0..2..0....0..0..2..0....0..2..2..0
..2..0..0..0....2..2..2..0....0..0..2..0....2..2..0..0....2..2..0..0
..0..2..0..2....0..2..0..2....2..0..2..2....2..0..2..2....0..0..2..2
		

Crossrefs

Column 1 is A077957
Column 2 is A006012

A003143 a(2*n) = floor( 17*2^n/14 ), a(2*n+1) = floor( 12*2^n/7 ).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 54, 77, 109, 155, 219, 310, 438, 621, 877, 1243, 1755, 2486, 3510, 4973, 7021, 9947, 14043, 19894, 28086, 39789, 56173, 79579, 112347, 159158, 224694, 318317, 449389, 636635, 898779, 1273270, 1797558
Offset: 0

Views

Author

Keywords

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 207.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(17+7*(n mod 2))*2^(n div 2) div 14: n in [0..50]]; // Vincenzo Librandi, May 27 2016
    
  • Maple
    A003143:=(1+z**3-z**4+z**5-z**6+z**7)/((z-1)*(z**2-z+1)*(z**2+z+1)*(2*z**2-1)); # [Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    Flatten[Table[{Floor[17 2^n / 14], Floor[12 2^n / 7]}, {n, 0, 30}]] (* Vincenzo Librandi, May 27 2016 *)
  • PARI
    a(n)=(17+7*(n%2))*2^(n\2)\14
    
  • SageMath
    [(((17 +7*(n%2))*2^(n//2))//14) for n in range(51)] # G. C. Greubel, Nov 04 2022

Formula

G.f.: (1 +x^3 -x^4 +x^5 -x^6 +x^7)/((1-x)(1-x+x^2)*(1+x+x^2)*(1-2*x^2)). - Simon Plouffe
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) + 2*a(n-6) - 2*a(n-7) for n > 7. - Chai Wah Wu, May 25 2016
a(n) = (1/2)*[n=0] - 2/3 - (1/14)*(2*A010892(n) - 3*A010892(n-1)) + (1/42)*(4*A049347(n) - A049347(n-1)) + (1/14)*(17*A077957(n) + 24*A077957(n-1)). - G. C. Greubel, Nov 04 2022

Extensions

More terms from Michael Somos, May 04 2000
Previous Showing 41-50 of 59 results. Next