A316469
Matula-Goebel numbers of unlabeled rooted identity RPMG-trees, meaning the Matula-Goebel numbers of the branches of any non-leaf node are relatively prime.
Original entry on oeis.org
1, 2, 6, 26, 78, 202, 606, 794, 2382, 2462, 2626, 7386, 7878, 8914, 10322, 12178, 26742, 30966, 32006, 36534, 42374, 43954, 47206, 80194, 96018, 115882, 127122, 131862, 141618, 149782, 158314, 160978, 184622, 217058, 240582, 248662, 260422, 347646, 449346
Offset: 1
78 = prime(1)*prime(2)*prime(6) belongs to the sequence because the indices {1,2,6} are relatively prime, distinct, and already belong to the sequence.
The sequence of all identity RPMG-trees preceded by their Matula-Goebel numbers begins:
1: o
2: (o)
6: (o(o))
26: (o(o(o)))
78: (o(o)(o(o)))
202: (o(o(o(o))))
606: (o(o)(o(o(o))))
794: (o(o(o)(o(o))))
2382: (o(o)(o(o)(o(o))))
2462: (o(o(o(o(o)))))
2626: (o(o(o))(o(o(o))))
7386: (o(o)(o(o(o(o)))))
7878: (o(o)(o(o))(o(o(o))))
Cf.
A000081,
A000837,
A004111,
A007097,
A078374,
A276625,
A289509,
A302696,
A302796,
A316467,
A316470,
A316471,
A316474,
A316494.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Or[#==1,And[SquareFreeQ[#],GCD@@primeMS[#]==1,And@@#0/@primeMS[#]]]&]
A316503
Matula-Goebel numbers of unlabeled rooted identity trees with n nodes in which the branches of any node with more than one branch have empty intersection.
Original entry on oeis.org
1, 2, 3, 5, 6, 10, 11, 13, 15, 22, 26, 29, 30, 31, 33, 41, 47, 55, 58, 62, 66, 78, 79, 82, 93, 94, 101, 109, 110, 113, 123, 127, 130, 137, 141, 143, 145, 155, 158, 165, 174, 179, 186, 195, 202, 205, 211, 218, 226, 246, 254, 257, 271, 274, 282, 286, 290, 293
Offset: 1
Sequence of rooted identity trees preceded by their Matula-Goebel numbers begins:
1: o
2: (o)
3: ((o))
5: (((o)))
6: (o(o))
10: (o((o)))
11: ((((o))))
13: ((o(o)))
15: ((o)((o)))
22: (o(((o))))
26: (o(o(o)))
29: ((o((o))))
30: (o(o)((o)))
31: (((((o)))))
Cf.
A000081,
A000837,
A004111,
A007097,
A078374,
A276625,
A289509,
A302796,
A316467,
A316470,
A316494,
A316502.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Or[#==1,And[SquareFreeQ[#],Or[PrimeQ[#],GCD@@primeMS[#]==1],And@@#0/@primeMS[#]]]&]
A319301
Sum of GCDs of strict integer partitions of n.
Original entry on oeis.org
1, 2, 4, 5, 7, 10, 11, 14, 18, 21, 22, 33, 30, 39, 49, 54, 54, 78, 72, 100, 110, 121, 126, 181, 174, 207, 238, 284, 284, 389, 370, 466, 512, 582, 647, 806, 796, 954, 1066, 1265, 1300, 1616, 1652, 1979, 2192, 2452, 2636, 3202, 3336, 3892, 4237, 4843, 5172, 6090
Offset: 1
-
b:= proc(n, i, r) option remember; `if`(i*(i+1)/2 `if`(i b(n$2, 0):
seq(a(n), n=1..61); # Alois P. Heinz, Mar 17 2019
-
Table[Sum[GCD@@ptn,{ptn,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,30}]
(* Second program: *)
b[n_, i_, r_] := b[n, i, r] = If[i(i+1)/2 < n, 0,
With[{t = GCD[i, r]}, If[i < n, b[n - i, Min[i - 1, n - i], t], 0] +
If[i == n, t, 0] + b[n, i - 1, r]]];
a[n_] := b[n, n, 0];
Array[a, 61] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
A338333
Number of relatively prime 3-part strict integer partitions of n with no 1's.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 7, 6, 10, 8, 14, 12, 18, 16, 24, 18, 30, 25, 34, 30, 44, 31, 52, 42, 56, 49, 69, 50, 80, 64, 83, 70, 102, 71, 114, 90, 112, 100, 140, 98, 153, 117, 153, 132, 184, 128, 195, 154, 196, 169, 234, 156, 252, 196, 241
Offset: 0
The a(9) = 1 through a(19) = 14 triples (A = 10, B = 11, C = 12, D = 13, E = 14):
432 532 542 543 643 653 654 754 764 765 865
632 732 652 743 753 763 854 873 874
742 752 762 853 863 954 964
832 932 843 943 872 972 973
852 952 953 A53 982
942 B32 962 B43 A54
A32 A43 B52 A63
A52 D32 A72
B42 B53
C32 B62
C43
C52
D42
E32
A001399(n-9) does not require relative primality.
A284825 counts the case that is also pairwise non-coprime.
A337452 counts these partitions of any length.
A337563 is the pairwise coprime instead of relatively prime version.
A337605 is the pairwise non-coprime instead of relative prime version.
A338332 is the not necessarily strict version.
A000837 counts relatively prime partitions.
A008284 counts partitions by sum and length.
A078374 counts relatively prime strict partitions.
A101271 counts 3-part relatively prime strict partitions.
A220377 counts 3-part pairwise coprime strict partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.
-
Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,30}]
A324752
Number of strict integer partitions of n not containing 1 or any prime indices of the parts.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 2, 3, 1, 4, 4, 4, 5, 6, 7, 10, 9, 12, 12, 16, 17, 22, 22, 26, 31, 35, 37, 46, 50, 55, 66, 70, 82, 90, 101, 114, 127, 143, 159, 172, 202, 215, 246, 267, 301, 327, 366, 402, 447, 491, 545, 600, 655, 722, 795, 875, 964, 1050, 1152, 1259, 1383
Offset: 0
The a(2) = 1 through a(17) = 12 strict integer partitions (A...H = 10...17):
2 3 4 5 6 7 8 9 A B C D E F G H
42 43 54 64 65 75 76 86 87 97 98
52 63 73 83 84 85 95 96 A6 A7
72 82 542 93 94 A4 A5 C4 B6
A2 B2 B3 B4 D3 C5
643 752 C3 E2 D4
842 D2 763 E3
654 943 854
843 A42 863
852 872
A52
B42
An example for n = 60 is (19,14,13,7,5,2), with prime indices:
19: {8}
14: {1,4}
13: {6}
7: {4}
5: {3}
2: {1}
None of these prime indices {1,3,4,6,8} belong to the partition, as required.
Cf.
A000720,
A001462,
A007097,
A074971,
A078374,
A112798,
A276625,
A290822,
A305713,
A306844,
A324764.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]
A338332
Number of relatively prime 3-part integer partitions of n with no 1's.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 5, 3, 8, 6, 9, 9, 16, 10, 21, 15, 22, 20, 33, 21, 38, 30, 41, 35, 56, 34, 65, 49, 64, 56, 79, 55, 96, 72, 93, 77, 120, 76, 133, 99, 122, 110, 161, 105, 172, 126, 167, 143, 208, 136, 213, 165, 212, 182, 261, 163, 280, 210, 257
Offset: 0
The a(7) = 1 through a(17) = 16 triples (A = 10, B = 11, C = 12, D = 13):
322 332 432 433 443 543 544 554 654 655 665
522 532 533 552 553 653 744 754 755
542 732 643 743 753 763 764
632 652 752 762 772 773
722 733 833 843 853 854
742 932 852 943 863
832 942 952 872
922 A32 A33 944
B22 B32 953
962
A43
A52
B33
B42
C32
D22
A001399(n-6) does not require relative primality.
A284825 counts the case that is also pairwise non-coprime.
A302698 counts these partitions of any length.
A337563 is the pairwise coprime instead of relatively prime version.
A008284 counts partitions by sum and length.
Cf.
A000010,
A000741,
A023022,
A078374,
A082024,
A101271,
A307719,
A337450,
A337599,
A337600,
A337601.
-
Table[Length[Select[IntegerPartitions[n,{3}],!MemberQ[#,1]&&GCD@@#==1&]],{n,0,30}]
A338468
Odd squarefree numbers whose prime indices have no common divisor > 1.
Original entry on oeis.org
15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 105, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 195, 201, 205, 209, 215, 217, 219, 221, 231, 249, 253, 255, 265, 285, 287, 291, 295, 309, 323, 327, 329, 335, 341, 345, 355, 357, 381, 385, 391, 395, 403, 407, 411
Offset: 1
The sequence of terms together with their prime indices begins:
15: {2,3} 145: {3,10} 249: {2,23} 355: {3,20}
33: {2,5} 155: {3,11} 253: {5,9} 357: {2,4,7}
35: {3,4} 161: {4,9} 255: {2,3,7} 381: {2,31}
51: {2,7} 165: {2,3,5} 265: {3,16} 385: {3,4,5}
55: {3,5} 177: {2,17} 285: {2,3,8} 391: {7,9}
69: {2,9} 187: {5,7} 287: {4,13} 395: {3,22}
77: {4,5} 195: {2,3,6} 291: {2,25} 403: {6,11}
85: {3,7} 201: {2,19} 295: {3,17} 407: {5,12}
93: {2,11} 205: {3,13} 309: {2,27} 411: {2,33}
95: {3,8} 209: {5,8} 323: {7,8} 413: {4,17}
105: {2,3,4} 215: {3,14} 327: {2,29} 415: {3,23}
119: {4,7} 217: {4,11} 329: {4,15} 429: {2,5,6}
123: {2,13} 219: {2,21} 335: {3,19} 435: {2,3,10}
141: {2,15} 221: {6,7} 341: {5,11} 437: {8,9}
143: {5,6} 231: {2,4,5} 345: {2,3,9} 447: {2,35}
A337452 counts partitions with these Heinz numbers (ordered version:
A337451).
A056911 lists odd squarefree numbers.
A289509 lists Heinz numbers of relatively prime partitions, counted by
A000837 (ordered version:
A000740).
Cf.
A000010,
A007359,
A051424,
A055684,
A056239,
A101268,
A289508,
A302505,
A302569,
A302696,
A302798,
A337694.
A338553
Number of integer partitions of n that are either constant or relatively prime.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 15, 20, 29, 37, 56, 68, 101, 122, 170, 213, 297, 352, 490, 587, 778, 948, 1255, 1488, 1953, 2337, 2983, 3585, 4565, 5393, 6842, 8123, 10088, 12015, 14865, 17534, 21637, 25527, 31085, 36701, 44583, 52262, 63261, 74175, 88936, 104305, 124754
Offset: 0
The a(1) = 1 through a(7) = 15 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (51) (52)
(211) (221) (222) (61)
(1111) (311) (321) (322)
(2111) (411) (331)
(11111) (2211) (421)
(3111) (511)
(21111) (2221)
(111111) (3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
A078374(n) + 1 is the strict case (n > 1).
A338555 gives the Heinz numbers of these partitions.
A000837 counts relatively prime partitions, with Heinz numbers
A289509.
A282750 counts relatively prime partitions by sum and length.
Cf.
A000010,
A007360,
A008284,
A023023,
A051424,
A101271,
A101391,
A302698,
A304712,
A327516,
A337664.
-
Table[Length[Select[IntegerPartitions[n],SameQ@@#||GCD@@#==1&]],{n,0,30}]
A366853
Number of integer partitions of n into odd, pairwise coprime parts.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 17, 18, 20, 22, 25, 29, 33, 36, 39, 43, 49, 55, 61, 66, 69, 75, 85, 94, 104, 113, 120, 129, 143, 159, 172, 183, 193, 207, 226, 251, 272, 288, 304, 325, 350, 383, 414, 437, 460, 494, 532, 577, 622, 655, 684
Offset: 0
The a(1) = 1 through a(10) = 7 partitions:
1 11 3 31 5 51 7 53 9 73
111 1111 311 3111 511 71 531 91
11111 111111 31111 5111 711 5311
1111111 311111 51111 7111
11111111 3111111 511111
111111111 31111111
1111111111
For relatively prime (not pairwise coprime):
A366843, with evens
A000837.
A101268 counts pairwise coprime compositions.
-
pwcop[y_]:=And@@(GCD@@#==1&)/@Subsets[y,{2}]
Table[Length[Select[IntegerPartitions[n],And@@OddQ/@#&&pwcop[#]&]],{n,0,30}]
A318718
Heinz numbers of strict integer partitions with a common divisor > 1.
Original entry on oeis.org
3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 37, 39, 41, 43, 47, 53, 57, 59, 61, 65, 67, 71, 73, 79, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 127, 129, 131, 133, 137, 139, 149, 151, 157, 159, 163, 167, 173, 179, 181, 183, 185, 191, 193, 197, 199
Offset: 1
Comments