cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A078740 Triangle of generalized Stirling numbers S_{3,2}(n,k) read by rows (n>=1, 2<=k<=2n).

Original entry on oeis.org

1, 6, 6, 1, 72, 168, 96, 18, 1, 1440, 5760, 6120, 2520, 456, 36, 1, 43200, 259200, 424800, 285120, 92520, 15600, 1380, 60, 1, 1814400, 15120000, 34776000, 33566400, 16304400, 4379760, 682200, 62400, 3270, 90, 1, 101606400, 1117670400
Offset: 1

Views

Author

N. J. A. Sloane, Dec 21 2002

Keywords

Comments

The sequence of row lengths of this array is [1,3,5,7,...] = A005408(n-1), n>=1.
For the scaled array s2_{3,2}(n,k) := a(n,k)*k!/((n+1)!*n!) see A090452.

Examples

			1;
6, 6, 1;
72, 168, 96, 18, 1;
...
		

Crossrefs

Row sums give A078738. Cf. A078739.

Programs

  • Mathematica
    a[n_, k_] := (-1)^k*n!*(n+1)!*HypergeometricPFQ[{2-k, n+1, n+2}, {2, 3}, 1]/(2*(k-2)!); Table[a[n, k], {n, 1, 7}, {k, 2, 2*n}] // Flatten (* Jean-François Alcover, Dec 04 2013 *)

Formula

Recursion: a(n, k) = Sum(binomial(2, p)*fallfac(n-1-p+k, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 1)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=3, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).
a(n, k) = (((-1)^k)/k!)*Sum(((-1)^p)*binomial(k, p)*product(fallfac(p+(j-1)*(3-2), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=3, s=2.
a(n, k) = (-1)^k n! (n+1)! 3F2(2-k, n+1, n+2; 2, 3; 1) / (2(k-2)!). - Jean-François Alcover, Dec 04 2013

Extensions

Edited by Wolfdieter Lang, Dec 23 2003

A078741 Triangle of generalized Stirling numbers S_{3,3}(n,k) read by rows (n>=1, 3<=k<=3n).

Original entry on oeis.org

1, 6, 18, 9, 1, 36, 540, 1242, 882, 243, 27, 1, 216, 13608, 94284, 186876, 149580, 56808, 11025, 1107, 54, 1, 1296, 330480, 6148872, 28245672, 49658508, 41392620, 18428400, 4691412, 706833, 63375, 3285, 90, 1, 7776, 7954848, 380841264, 3762380016, 13062960720
Offset: 1

Views

Author

N. J. A. Sloane, Dec 21 2002

Keywords

Comments

The sequence of row lengths for this array is [1,4,7,10,..]= A016777(n-1), n>=1.
The g.f. for the k-th column, (with leading zeros and k>=3) is G(k,x)= x^ceiling(k/3)*P(k,x)/product(1-fallfac(p,3)*x,p=3..k), with fallfac(n,m) := A008279(n,m) (falling factorials) and P(k,x) := sum(A089517(k,m)*x^m,m=0..kmax(k)), k>=3, with kmax(k) := A004523(k-3)= floor(2*(k-3)/3)= [0,0,1,2,2,3,4,4,5,...]. For the recurrence of the G(k,x) see A089517. Wolfdieter Lang, Dec 01 2003
For the computation of the k-th column sequence see A090219.
Codara et al., show that T(n,k) gives the number of k-colorings of the graph nK_3 (the disjoint union of n copies of the complete graph K_3). An example is given below. - Peter Bala, Aug 15 2013

Examples

			From _Peter Bala_, Aug 15 2013: (Start)
The table begins
n\k |   3     4     5      6      7     8     9   10  11  12
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
  1 |   1
  2 |   6    18     9      1
  3 |  36   540  1242    882    243    27     1
  4 | 216 13608 94284 186876 149580 56808 11025 1107  54   1
...
Graph coloring interpretation of T(2,3) = 6:
The graph 2K_3 is 2 copies of K_3, the complete graph on 3 vertices:
    o b      o e
   / \      / \
  o---o    o---o
  a   c    d   f
The six 3-colorings of 2K_3 are ad|be|cf, ad|bf|ce, ae|bd|cf, ae|bf|cd, af|bd|ce, and af|be|cd. (End)
		

Crossrefs

Row sums give A069223. Cf. A078739.
The column sequences (without leading zeros) are A000400 (powers of 6), 18*A089507, 9*A089518, A089519, etc.
A089504, A069223 (row sums), A090212 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := (-1)^k*Sum[(-1)^p*((p-2)*(p-1)*p)^n*Binomial[k, p], {p, 3, k}]/k!; Table[a[n, k], {n, 1, 6}, {k, 3, 3*n}] // Flatten (* Jean-François Alcover, Dec 04 2013 *)

Formula

a(n, k) = (((-1)^k)/k!)*Sum_{p = 3..k} (-1)^p* binomial(k, p)*fallfac(p, 3)^n, with fallfac(p, 3) := A008279(p, 3) = p*(p-1)*(p-2); 3 <= k <= 3*n, n >= 1, else 0. From eq.(19) with r = 3 of the Blasiak et al. reference.
E^n = Sum_{k = 3..3*n} a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator x^3d^3/dx^3.
The row polynomials R(n,x) are given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k >= 0} (k*(k-1)*(k-2))^n*x^k/k!. - Peter Bala, Aug 15 2013

A055203 Number of different relations between n intervals on a line.

Original entry on oeis.org

1, 1, 13, 409, 23917, 2244361, 308682013, 58514835289, 14623910308237, 4659168491711401, 1843200116875263613, 886470355671907534969, 509366445167037318008557, 344630301458257894126724041, 271188703889907190388528763613, 245570692377888837925941696215449
Offset: 0

Views

Author

Sylviane R. Schwer (schwer(AT)lipn.univ-paris13.fr), Jun 22 2000

Keywords

Comments

From Peter Bala, Jan 30 2018: (Start)
Number of alignments of n strings of length 2 (see Slowinski).
Conjectures: a(n) == 1 (mod 12); for fixed k, the sequence a(n) (mod k) eventually becomes periodic with exact period a divisor of phi(k), where phi(k) is Euler's totient function A000010. (End)

Examples

			In case n = 2 this is the Delannoy number a(2) = D(2,2) = 13.
a(2) = 13 because if you have two intervals [a1,a2] and [b1,b2], using a for a1 or a2 and b for b1 or b2 and writing c if an a is at the same place as a b, we get the following possibilities: aabb, acb, abab, cab, abc, baab, abba, cc, bac, cba, baba, bca, bbaa.
		

References

  • S. R. Schwer, Dépendances temporelles: les mots pour le dire, Journées Intelligence Artificielle, 1998.
  • S. R. Schwer, Enumerating and generating Allen's algebra, in preparation.

Crossrefs

Programs

  • Maple
    lambda := proc(p,n) option remember; if n = 1 then if p = 2 then RETURN(1) else RETURN(0) fi; else RETURN((p*(p-1)/2)*(lambda(p,n-1)+2*lambda(p-1,n-1)+lambda(p-2,n-1))) fi; end; A055203 := n->add(lambda(i,n),i=2..2*n);
    A055203 := proc(n) local k; add(A078739(n,k)*k!,k=0..2*n)/2^n end:
    seq(A055203(n),n=0..15); # Peter Luschny, Mar 25 2011
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> ceil(add(b(n+k)*binomial(n, k), k=0..n)/2^(n+1)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 10 2018
  • Mathematica
    a[n_] := Sum[((m-1)*m)^n / 2^(m+n+1), {m, 0, Infinity}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 10 2011, after Vladeta Jovovic *)
    With[{r = 2}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 15}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

a(n) = Sum_{i=2..2n} lambda(i, n), with lambda(p, 1) = 1 if p = 2, otherwise 0; lambda(p, n) = (p*(p-1)/2)*(lambda(p, n-1) + 2*lambda(p-1, n-1) + lambda(p-2, n-1)).
lambda(p, n) = Sum_k[( - 1)^(p + k) * C(p, k) * ((k - 1)*k/2)^n]. So if T(m, 0), T(m, 1), ..., T(m, m) is any row of A035317 with m >= 2n - 1 then a(n) = Sum_j[(-1)^j * T(m, j) * ((m - j + 1)*(m - j)/2)^n]; e.g., a(2) = 13 = 1*6^2 - 3*3^2 + 4*1^2 - 2*0^2 = 1*10^2 - 4*6^2 + 7*3^2 - 6*1^2 + 3*0^2 = 1*15^2 - 5*10^2 + 11*6^2 - 13*3^2 + 9*1^2 - 3*0^2 etc. while a(3) = 409 = 1*15^3 - 5*10^3 + 11*6^3 - 13*3^3 + 9*1^3 - 3*0^3 etc. - Henry Bottomley, Jan 03 2001
Row sums of A122193. - Vladeta Jovovic, Aug 24 2006
a(n) = Sum_{k=0..n} k!*Stirling2(n,k)*A121251(k). - Vladeta Jovovic, Aug 25 2006
E.g.f.: Sum_{m>=0} exp(x*binomial(m,2))/2^(m+1). - Vladeta Jovovic, Sep 24 2006
a(n) = Sum_{m>=0} binomial(m,2)^n/2^(m+1). - Vladeta Jovovic, Aug 17 2006
a(n) = (1/2^n)*Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A000670(n+k). - Vladeta Jovovic, Aug 17 2006
a(n) ~ n! * n^n * 2^(n-1) / (exp(n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Mar 15 2014
From Peter Bala, Jan 30 2018: (Start)
a(n) = Sum_{k = 2..2*n} Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i*(i-1)/2)^n.
a(n) = (1/2^(n+1))*Sum_{k = 0..n} binomial(n,k)*A000670(n+k) for n >= 1. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 04 2000
More terms from N. J. A. Sloane, Jan 03 2001

A122193 Triangle T(n,k) of number of loopless multigraphs with n labeled edges and k labeled vertices and without isolated vertices, n >= 1; 2 <= k <= 2*n.

Original entry on oeis.org

1, 1, 6, 6, 1, 24, 114, 180, 90, 1, 78, 978, 4320, 8460, 7560, 2520, 1, 240, 6810, 63540, 271170, 604800, 730800, 453600, 113400, 1, 726, 43746, 774000, 6075900, 25424280, 61923960, 90720000, 78813000, 37422000, 7484400
Offset: 1

Views

Author

Vladeta Jovovic, Aug 24 2006

Keywords

Comments

T(n,k) equals the number of arrangements on a line of n (nondegenerate) finite closed intervals having k distinct endpoints. See the 'IBM Ponder This' link. An example is given below. - Peter Bala, Jan 28 2018
T(n,k) equals the number of alignments of length k of n strings each of length 2. See Slowinski. Cf. A131689 (alignments of strings of length 1) and A299041 (alignments of strings of length 3). - Peter Bala, Feb 04 2018

Examples

			Triangle begins:
  1;
  1,  6,   6;
  1, 24, 114,  180,   90;
  1, 78, 978, 4320, 8460, 7560, 2520;
  ...
From _Francisco Santos_, Nov 17 2017: (Start)
For n=3 edges and k=4 vertices there are three loopless multigraphs without isolated vertices: a path, a Y-graph, and the multigraph {12, 34, 34}. The number of labelings in each is 3!4!/a, where a is the number of automorphisms. This gives respectively 3!4!/2 = 72, 3!4!/6 = 24 and 3!4!/8 = 18, adding up to 72 + 24 + 18 = 114. (End)
From _Peter Bala_, Jan 28 2018: (Start)
T(2,3) = 6: Consider 2 (nondegenerate) finite closed intervals [a, b] and [c, d]. There are 6 arrangements of these two intervals with 3 distinct endpoints:
  ...a--b--d....  a < b = c < d
  ...a...c--b...  a < c < b = d
  ...a--d...b...  a = c < d < b
  ...a--b...d...  a = c < b < d
  ...c...a--d...  c < a < b = d
  ...c--a--b....  c < a = d < b
T(2,4) = 6: There are 6 arrangements of the two intervals with 4 distinct endpoints:
  ...a--b...c--d.....  no intersection a < b < c < d
  ...a...c...b...d...  a < c < b < d
  ...a...c--d...b....  [c,d] is a proper subset of [a,b]
  ...c...a...d...b...  c < a < d < b
  ...c...a--b...d... [a,b] is a proper subset of [c,d]
  ...c--d...a--b.....  no intersection c < d < a < b.
Sums of powers of triangular numbers:
Row 2: Sum_{i = 2..n-1} C(i,2)^2 = C(n,3) + 6*C(n,4) + 6*C(n,5);
Row 3: Sum_{i = 2..n-1} C(i,2)^3 = C(n,3) + 24*C(n,4) + 114*C(n,5) + 180*C(n,6) + 90*C(n,7). See A024166 and A085438.
exp( Sum_{n >= 1} R(n,2)*x^n/n ) = (1 + x + 19*x^2 + 1147*x^3 + 145606*x^4 + 31784062*x^5 + ... )^4
exp( Sum_{n >= 1} R(n,3)*x^n/n ) = (1 + x + 37*x^2 + 4453*x^3 + 1126375*x^4 + 489185863*x^5 + ... )^9
exp( Sum_{n >= 1} R(n,4)*x^n/n ) = (1 + x + 61*x^2 + 12221*x^3 + 5144411*x^4 + 3715840571*x^5 + ... )^16 (End)
From _Peter Bala_, Feb 04 2018: (Start)
T(3,3) = 24 alignments of length 3 of 3 strings each of length 2. Examples include
  (i) A B -    (ii) A - B
      - C D         - C D
      - E F         E F -
There are 18 alignments of type (i) with two gap characters in one of the columns (3 ways of putting 2 gap characters in a column x 2 ways to place the other letter in the row which doesn't yet have a gap character x 3 columns: there are 6 alignments of type (ii) with a single gap character in each column (3 ways to put a single gap character in the first column x 2 ways to then place a single gap character in the second column). (End)
		

Crossrefs

Row sums give A055203.
For Sum_{i = 2..n} C(i,2)^k see A024166 (k = 2), A085438 - A085442 ( k = 3 thru 7).

Programs

  • Maple
    # Note that the function implements the full triangle because it can be
    # much better reused and referenced in this form.
    A122193 := (n,k) -> A078739(n,k)*k!/2^n:
    # Displays the truncated triangle from the definition:
    seq(print(seq(A122193(n,k),k=2..2*n)),n=1..6); # Peter Luschny, Mar 25 2011
  • Mathematica
    t[n_, k_] := Sum[(-1)^(n - r) Binomial[n, r] StirlingS2[n + r, k], {r, 0, n}]; Table[t[n, k] k!/2^n, {n, 6}, {k, 2, 2 n}] // Flatten (* Michael De Vlieger, Nov 18 2017, after Jean-François Alcover at A078739 *)

Formula

Double e.g.f.: exp(-x)*Sum_{n>=0} exp(binomial(n,2)*y)*x^n/n!.
T(n,k) = S_{2,2}(n,k)*k!/2^n; S_{2,2} the generalized Stirling numbers A078739. - Peter Luschny, Mar 25 2011
From Peter Bala, Jan 28 2018: (Start)
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i*(i-1)/2)^n.
T(n,k) = k*(k-1)/2*( T(n-1,k) + 2*T(n-1,k-1) + T(n-1,k-2) ) for 2 < k <= 2*n with boundary conditions T(n,2) = 1 for n >= 1 and T(n,k) = 0 if (k < 2) or (k > 2*n).
n-th row polynomial R(n,x) = Sum_{i >= 2} (i*(i-1)/2)^n * x^i/(1+x)^(i+1) for n >= 1.
1/(1-x)*R(n,x/(1-x)) = Sum_{i >= 2} (i*(i-1)/2)^n*x^i for n >= 1.
R(n,x) = 1/2^n*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*F(n+k,x), where F(n,x) = Sum_{k = 0..n} k!*Stirling2(n,k)*x^k is the n-th Fubini polynomial, the n-th row polynomial of A131689.
R(n,x) = x/(1+x)*1/2^n*Sum_{k = 0..n} binomial(n,k)*F(n+k,x) for n >= 1.
The polynomials Sum_{k = 2..2*n} T(n,k)*x^(k-2)*(1-x)^(2*n-k) are the row polynomials of A154283.
A154283 * A007318 equals the row reverse of this array.
Sum_{k = 2..2*n} T(n,k)*binomial(x,k) = ( binomial(x,2) )^n. Equivalently, Sum_{k = 2..2*n} (-1)^k*T(n,k)*binomial(x+k,k) = ( binomial(x+2,2) )^n. Cf. the Worpitzky-type identity Sum_{k = 1..n} A019538(n,k)*binomial(x,k) = x^n.
Sum_{i = 2..n-1} (i*(i-1)/2)^m = Sum_{k = 2..2*m} T(m,k) * binomial(n,k+1) for m >= 1. See Examples below.
R(n,x) = x^2 o x^2 o ... o x^2 (n factors), where o is the black diamond product of power series defined in Dukes and White. Note the polynomial x o x o ... o x (n factors) is the n-th row polynomial of A019538.
x^2*R(n,-1-x) = (1+x)^2*R(n,x) for n >= 1.
R(n+1,x) = 1/2*x^2*(d/dx)^2 ((1+x)^2*R(n,x)).
The zeros of R(n,x) belong to the interval [-1, 0].
Alternating row sums equal 1, that is R(n,-1) = 1.
R(n,-2) = 4*R(n,1) = 4*A055203(n).
4^n*Sum_{k = 2..2*n} T(n,k)*(-1/2)^k appears to equal (-1)^(n+1)*A005799(n) for n >= 1.
For k a nonzero integer, the power series A(k,x) := exp( Sum_{n >= 1} 1/k^2*R(n,k)*x^n/n ) appear to have integer coefficients. See the Example section.
Sum_{k = 2..2*n} T(n,k)*binomial(x,k-2) = binomial(x,2)^n - 2*binomial(x+1,2)^n + binomial(x+2,2)^n. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane (the corresponding property also holds for the row polynomials of A019538 with a factor of x removed). (End)
From Peter Bala, Mar 08 2018: (Start)
n-th row polynomial R(n,x) = coefficient of (z_1)^2 * ... * (z_n)^2 in the expansion of the rational function 1/(1 + x - x*(1 + z_1)*...*(1 + z_n)).
The n-th row of the table is given by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318 and v_n is the sequence (0, 0, 1, 3^n, 6^n, 10^n, ...) regarded as an infinite column vector, where 1, 3, 6, 10, ... is the sequence of triangular numbers A000217. Cf. A087127. (End)

Extensions

Definition corrected by Francisco Santos, Nov 17 2017

A090214 Generalized Stirling2 array S_{4,4}(n,k).

Original entry on oeis.org

1, 24, 96, 72, 16, 1, 576, 13824, 50688, 59904, 30024, 7200, 856, 48, 1, 13824, 1714176, 21606912, 76317696, 110160576, 78451200, 30645504, 6976512, 953424, 78400, 3760, 96, 1, 331776, 207028224, 8190885888, 74684104704, 253100173824
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

The row length sequence for this array is [1,5,9,13,17,...] = A016813(n-1), n >= 1.
The g.f. for the k-th column, (with leading zeros and k >= 4) is G(k,x) = x^ceiling(k/4)*P(k,x)/Product_{p = 4..k} (1 - fallfac(p,4)*x), with fallfac(n,m) := A008279(n,m) (falling factorials) and P(k,x) := Sum_{m = 0..kmax(k)} A090221(k,m)*x^m, k >= 4, with kmax(k) := A057353(k-4)= floor(3*(k-4)/4). For the recurrence of the G(k,x) see A090221.
Codara et al., show that T(n,k) gives the number of k-colorings of the graph nK_4 (the disjoint union of n copies of the complete graph K_4). - Peter Bala, Aug 15 2013

Examples

			Table begins
n\k|   4      5      6      7      8     9   10   11   12
= = = = = = = = = = = = = = = = = = = = = = = = = = = = =
1  |   1
2  |  24     96     72     16      1
3  | 576  13824  50688  59904  30024  7200  856   48    1
...
		

Crossrefs

Cf. A090215, A071379 (row sums), A090213 (alternating row sums).
S_{1, 1} = A008277, S_{2, 1} = A008297 (ignoring signs), S_{3, 1} = A035342, S_{2, 2} = A078739, S_{3, 2} = A078740, S_{3, 3} = A078741.

Programs

  • Maple
    T:= (n,k) -> (-1)^k/k!*add((-1)^p*binomial(k,p)*(p*(p-1)*(p-2)*(p-3))^n,p=4..k):
    seq(seq(T(n,k),k=4..4*n),n=1..10); # Robert Israel, Jan 28 2016
  • Mathematica
    a[n_, k_] := (((-1)^k)/k!)*Sum[((-1)^p)*Binomial[k, p]*FactorialPower[p, 4]^n, {p, 4, k}]; Table[a[n, k], {n, 1, 5}, {k, 4, 4*n}] // Flatten (* Jean-François Alcover, Sep 05 2012, updated Jan 28 2016 *)

Formula

a(n, k) = (-1)^k/k! * Sum_{p = 4..k} (-1)^p * binomial(k, p) * fallfac(p, 4)^n, with fallfac(p, 4) := A008279(p, 4) = p*(p - 1)*(p - 2)*(p - 3); 4 <= k <= 4*n, n >= 1, else 0. From eq.(19) with r = 4 of the Blasiak et al. reference.
E^n = Sum_{k = 4..4*n} a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator (x^4)*d^4/dx^4.
The row polynomials R(n,x) are given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k >= 0} (k*(k - 1)*(k - 2)*(k - 3))^n*x^k/k!. - Peter Bala, Aug 15 2013

A092077 Generalized Stirling2 array (8,2).

Original entry on oeis.org

1, 56, 16, 1, 10192, 4928, 776, 48, 1, 3872960, 2477440, 575680, 63360, 3536, 96, 1, 2517424000, 1940556800, 572868800, 86163840, 7326880, 364800, 10480, 160, 1, 2497284608000, 2210343116800, 773352966400, 143430604800, 15836206400, 1099612800, 49056960, 1398400, 24520, 240, 1
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

Crossrefs

The generalized (k, 2)-Stirling2 arrays are, for k=2, ..., 7: A078739, A078740, A090438, A091534, A091746 and A091747.
Cf. A091546, A091552 (first, resp. second column). A091757 (row sums). A091758 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := ((-1)^k/k!) Sum[(-1)^p Binomial[k, p] Product[FactorialPower[ p + 6(j-1), 2], {j, 1, n}], {p, 2, k}];
    Table[a[n, k], {n, 1, 6}, {k, 2, 2n}] // Flatten (* Jean-François Alcover, Feb 28 2020 *)

Formula

a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+6*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=8, s=2.
Recursion: a(n, k) = sum(binomial(2, p)*fallfac(6*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=8, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A262704 Triangle: Newton expansion of C(n,m)^3, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 6, 1, 0, 6, 24, 1, 0, 0, 114, 60, 1, 0, 0, 180, 690, 120, 1, 0, 0, 90, 2940, 2640, 210, 1, 0, 0, 0, 5670, 21840, 7770, 336, 1, 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1, 0, 0, 0, 1680, 189000, 735210, 407400, 42084, 720, 1, 0, 0, 0, 0, 224700, 2835756, 4280850, 1284360, 83880, 990, 1
Offset: 0

Views

Author

Giuliano Cabrele, Sep 27 2015

Keywords

Comments

Triangle here T_3(n,m) is such that C(n,m)^3 = Sum_{j=0..n} C(n,j)*T_3(j,m).
Equivalently, lower triangular matrix T_3 such that
|| C(n,m)^3 || = A181583 = P * T_3 = A007318 * T_3.
T_3(n,m) = 0 for n < m and for 3*m < n. In fact:
C(x,m)^q and C(x,m), with m nonnegative and q positive integer, are polynomial in x of degree m*q and m respectively, and C(x,m) is a divisor of C(x,m)^q.
Therefore the Newton series will give C(x,m)^q = T_q(m,m)*C(x,m) + T_q(m+1,m)*C(x,m+1) + ... + T_q(q*m,m)*C(x,q*m), where T_q(n,m) is the n-th forward finite difference of C(x,m)^q at x = 0.
Example:
C(x,2)^3 = x^3*(x-1)^3 / 8 = 1*C(x,2) + 24*C(x,3) + 114*C(x,4) + 180*C(x,5) + 90*C(x,6);
C(5,2)^3 = C(5,3)^3 = 1000 = 1*C(5,2) + 24*C(5,3) + 114*C(5,4) + 180*C(5,5) = 1*C(5,3) + 60*C(5,4) + 690*C(5,5).
So we get the expansion of the 3rd power of the binomial coefficient in terms of the binomial coefficients on the same row.
T_1 is the unitary matrix,
T_2 is the transpose of A109983,
T_3 is this sequence,
T_4, T_5 are A262705, A262706.

Examples

			Triangle starts:
n\m  [0]     [1]     [2]     [3]     [4]     [5]     [6]     [7]     [8]
[0]  1;
[1]  0,      1;
[2]  0,      6,      1;
[3]  0,      6,      24,     1;
[4]  0,      0,      114,    60,     1;
[5]  0,      0,      180,    690,    120,    1;
[6]  0,      0,      90,     2940,   2640,   210,    1;
[7]  0,      0,      0,      5670,   21840,  7770,   336,    1;
[8]  0,      0,      0,      5040,   87570,  107520, 19236,  504,    1;
[9]  ...
		

Crossrefs

Row sums are A172634, the inverse binomial transform of the Franel numbers (A000172).
Column sums are the A126086, per the comment given thereto by Brendan McKay.
Second diagonal (T_3(n+1,n)) is A007531 (n+2).
Column T_3(n,2) is A122193(3,n).
Cf. A109983 (transpose of), A262705, A262706.

Programs

  • Magma
    [&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^3: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
    
  • Mathematica
    T3[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^3, {j, 0, n}]; Table[T3[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
  • MuPAD
    // as a function
    T_3:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^3 $ j=0..n):
    // as a matrix h x h
    _P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
    _P_3:=h->matrix([[binomial(n,m)^3 $m=0..h]$n=0..h]):
    _T_3:=h->_P(h)^-1*_P_3(h):
    
  • PARI
    T_3(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^3), ", ")); print())} \\ Colin Barker, Oct 01 2015
    
  • PARI
    t3(n,m) = sum(j=0, n,  (-1)^((n-j)%2)* binomial(n,j)*binomial(j,m)^3);
    concat(vector(11, n, vector(n, k, t3(n-1,k-1)))) \\ Gheorghe Coserea, Jul 14 2016

Formula

T_3(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^3.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above,then T_3(n,m) = n! / (m!)^3 * S(m,m)(3,n).

A089503 Triangle of numbers used for basis change between certain falling factorials.

Original entry on oeis.org

1, 1, 4, 1, 12, 30, 1, 24, 168, 336, 1, 40, 540, 2880, 5040, 1, 60, 1320, 13200, 59400, 95040, 1, 84, 2730, 43680, 360360, 1441440, 2162160, 1, 112, 5040, 117600, 1528800, 11007360, 40360320, 57657600, 1, 144, 8568, 274176, 5140800, 57576960
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

Used to relate array A078739 ((2,2)-Stirling2) to triangle A071951 (Legendre-Stirling).

Examples

			The triangle begins:
n\m 1   2    3      4       5        6        7        8 ...
1:  1
2:  1   4
3:  1  12   30
4:  1  24  168    336
5:  1  40  540   2880    5040
6:  1  60 1320  13200   59400    95040
7:  1  84 2730  43680  360360  1441440  2162160
8:  1 112 5040 117600 1528800 11007360 40360320 57657600
...
Row 9:  1 144 8568 274176 5140800 57576960 374250240 1283143680 1764322560
Row 10: 1 180 13680 574560 14651280 234420480 2344204800 14065228800 45711993600 60949324800.
Reformatted - _Wolfdieter Lang_, Apr 10 2013
n=3: fallfac(x+2,6) = 1*fallfac(x,6) + 12*fallfac(x,5) + 30*fallfac(x,4).
		

Programs

  • Mathematica
    eq[n_, x_] := Sum[FactorialPower[x, 1 - m + 2*n]*a[n, m], {m, 1, n}] == FactorialPower[x + n - 1, 2*n]; eq[n_] := Table[eq[n, x], {x, n + 1, 2*n}]; row[n_] := First[Table[a[n, m], {m, 1, n}] /. Solve[eq[n]]]; Array[row, 10] // Flatten (* Jean-François Alcover, Sep 02 2016 *)
    a[n_,m_]:= Binomial[n-1,m-1]*Binomial[2n,m-1]*Gamma[m]; Table[a[n,m],{n,1,10},{m,1,n}] (* Stefano Negro, Nov 10 2021 *)

Formula

fallfac(x+n-1, 2*n) = Sum_{m=1..n} a(n, m)*fallfac(x, 2*n-(m-1)), n>=1 where fallfac(x, k) := Product_{j=1..k} (x+1-j), with fallfac(n, k) = A068424(n, k) (falling factorials). a(n, m) = 0 if n < m.
T(n, m) = binomial(n-1, m-1)*binomial(2n, m-1)*m!, for 1 <= m <= n, with binomial(n, m) = A007318. - Stefano Negro, Nov 10 2021

A262705 Triangle: Newton expansion of C(n,m)^4, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 14, 1, 0, 36, 78, 1, 0, 24, 978, 252, 1, 0, 0, 4320, 8730, 620, 1, 0, 0, 8460, 103820, 46890, 1290, 1, 0, 0, 7560, 581700, 1159340, 185430, 2394, 1, 0, 0, 2520, 1767360, 13387570, 8314880, 595476, 4088, 1, 0, 0, 0, 3087000, 85806000, 170429490, 44341584, 1642788, 6552, 1
Offset: 0

Views

Author

Giuliano Cabrele, Sep 30 2015

Keywords

Comments

Triangle here T_4(n,m) is such that C(n,m)^4 = Sum_{j=0..n} C(n,j)*T_4(j,m).
Equivalently, lower triangular matrix T_4 such that
|| C(n,m)^4 || = A202750 = P * T_4 = A007318 * T_4.
T_4(n,m) = 0 for n < m and for 4*m < n.
Refer to comment to A262704.
Example:
C(x,2)^4 = x^4*(x-1)^4 /16 = 1*C(x,2) + 78*C(x,3) + 978*C(x,4) + 4320*C(x,5) + 8460*C(x,6) + 7560*C(x,7) + 2520*C(x,8);
C(5,2)^4 = C(5,3)^4 = 10000 = 1*C(5,2) + 78*C(5,3) + 978*C(5,4) + 4320*C(5,5) = 1*C(5,3) + 252*C(5,4) + 8730*C(5,5).

Examples

			Triangle starts:
[1];
[0,  1];
[0, 14,    1];
[0, 36,   78,      1];
[0, 24,  978,    252,     1];
[0,  0, 4320,   8730,   620,    1];
[0,  0, 8460, 103820, 46890, 1290, 1];
		

Crossrefs

Row sums are, by definition, the inverse binomial transform of A005260.
Second diagonal (T_4(n+1,n)) is A058895(n+1).
Column T_4(n,2) is A122193(4,n).
Cf. A109983 (transpose of), A262704, A262706.

Programs

  • Magma
    [&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^4: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
    
  • Mathematica
    T4[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^4, {j, 0, n}]; Table[T4[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
  • MuPAD
    // as a function
    T_4:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^4 $ j=0..n):
    // as a matrix h x h
    _P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
    _P_4:=h->matrix([[binomial(n,m)^4 $m=0..h]$n=0..h]):
    _T_4:=h->_P(h)^-1*_P_4(h):
    
  • PARI
    T_4(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^4), ", ")); print())} \\ Colin Barker, Oct 01 2015

Formula

T_4(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^4.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above, then T_4(n,m) = n! / (m!)^4 * S(m,m)(4,n).

A262706 Triangle: Newton expansion of C(n,m)^5, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 30, 1, 0, 150, 240, 1, 0, 240, 6810, 1020, 1, 0, 120, 63540, 94890, 3120, 1, 0, 0, 271170, 2615340, 740640, 7770, 1, 0, 0, 604800, 32186070, 47271840, 4029690, 16800, 1, 0, 0, 730800, 214628400, 1281612570, 518276640, 17075940, 32760, 1, 0, 0, 453600, 859992000, 18459063000, 26947757970, 4027831080, 60171300, 59040, 1
Offset: 0

Views

Author

Giuliano Cabrele, Sep 30 2015

Keywords

Comments

Triangle here T_5(n,m) is such that C(n,m)^5 = Sum_{j=0..n} C(n,j)*T_5(j,m).
Equivalently, lower triangular matrix T_5 such that
|| C(n,m)^5 || = P * T_5 = A007318 * T_5.
T_5(n,m) = 0 for n < m and for 5*m < n.
Refer to comment to A262704.
Example:
C(x,2)^5 = x^5*(x-1)^5/32 = 1*C(x,2) + 240*C(x,3) + 6810*C(x,4) + 63540*C(x,5) + 271170*C(x,6) + 604800*C(x,7) + 730800*C(x,8) + 453600*C(x,9) + 113400*C(x,10);
C(5,2)^5 = C(5,3)^5 = 100000 = 1*C(5,2) + 240*C(5,3) + 6810*C(5,4) + 63540*C(5,5) = 1*C(5,3) + 1020*C(5,4) + 94890*C(5,5).

Examples

			Triangle starts:
[1];
[0,   1];
[0,  30,      1];
[0, 150,    240,       1];
[0, 240,   6810,    1020,      1];
[0, 120,  63540,   94890,   3120,    1];
[0,   0, 271170, 2615340, 740640, 7770, 1];
		

Crossrefs

Second diagonal (T_5(n+1,n)) is A061167(n+1).
Column T_5(n,2) is A122193(5,n).
Cf. A109983 (transpose of), A262704, A262705.

Programs

  • Magma
    [&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^5: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
    
  • Mathematica
    T5[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^5, {j, 0, n}]; Table[T5[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
  • MuPAD
    // as a function
    T_5:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^5 $ j=0..n):
    // as a matrix h x h
    _P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
    _P_5:=h->matrix([[binomial(n,m)^5 $m=0..h]$n=0..h]):
    _T_5:=h->_P(h)^-1*_P_5(h):
    
  • PARI
    T_5(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^5), ", ")); print())} \\ Colin Barker, Oct 01 2015

Formula

T_5(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^5.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above, then T_5(n,m) = n! / (m!)^5 * S(m,m)(5,n).
Previous Showing 11-20 of 21 results. Next